E

- Environmental Management
- Environmentally Friendly Business
- Climate Change
- Resource Circulation
- Pollution Prevention
- Efforts Toward Conserving Biodiversity
- Water Resources

Kansai Electric Power Co., Inc.

Kansai Transmission and Distribution, Inc.

Environmental Management

ENVIRONMEN

Policy and Concept

Environmental policy

As a responsible energy business deeply involved with the environment, we recognize the importance of addressing various environmental issues, such as climate change, resource recycling promotion and local environmental conservation. We are also committed to reducing the environmental burden and risks related to our business activities in line with the Kansai Electric Power Group Code of Conduct, which aims to proactively contribute to building a better environment and a sustainable society by providing environmentally friendly products and services. Moreover, in line with our conduct standards for individuals, we fully recognize the significance of environmental conservation, pay due consideration to the environmental impact of our business operations and support environmentally friendly practices with an emphasis on resource and energy conservation.

The Kansai Electric Power Group Environmental Policy sets the direction of our medium- to long-term environmental management plans, featuring seven approaches to address climate change, each of which is being promoted. The Environmental Policy is subject to review and examination by the Sustainability Promotion Board as necessary, and the results of which are communicated to our employees as well as to employees of group companies.

Environmental management system

Our Group has an environmental management system in place, incorporating the ISO 14001 guidelines, in order to promote measures for building a better environment and manage environmental risks. Our environmental management system, supervised by top management, is being upgraded through a continuous PDCA cycle—i.e., development of environmental policies; development, implementation, check and review of our Group's Eco Action (an action plan for environmental management); and management review by the Sustainability Promotion Board. Eco Action covers both our business activities and office activities while the latter concerns group-wide efforts to conserve resources and save energy.

Kansai Electric Power Group Environmental Policy

1. Adhering to environmental laws, regulations and related rules At the Kansai Electric Power Group, we adhere to laws,

regulations and other rules related to the environment.

2. Responding to climate change

At the Kansai Electric Power Group, recognizing climate change as a key business challenge, we actively work to reduce greenhouse gas emissions. We pursue the goal of carbon neutrality throughout the entirety of our business activities and support our customers and society in achieving decarbonization by 2050.

In addition, we also work to adapt in preparation for the harmful impacts of climate change.

3. Promoting resource circulation

At the Kansai Electric Power Group, recognizing that natural resources are limited, we advance efforts toward resource circulation in society as a whole. Our efforts include reducing natural resource consumption in our business activities, proactively promoting 3R (reduce, reuse, recycle) practices, and providing products and services that contribute to resource circulation.

4. Protecting local community environments

At the Kansai Electric Power Group, we seek to prevent environmental pollution while working to strictly manage and reduce toxic chemicals in our business activities in order to promote the environmental protection of local communities.

5. Conserving biodiversity

At the Kansai Electric Power Group, we recognize the importance of biodiversity. We properly assess, analyze and evaluate the impacts of our business activities and work to preserve biodiversity.

6. Promoting environmental communication

At the Kansai Electric Power Group, we work proactively to raise environmental awareness and disclose information related to the environment.

7. Continuously improving our environmental management systems At the Kansai Electric Power Group, we seek to continuously improve our environmental management systems in order to increase our environmental performance.

Environmer

Kansai Electric Power Grou

Governance

System

Environmental management efforts are ongoing, with the President (as Chief Environmental Management Officer) leading the environmental officers of each division and organization. Meanwhile, the Office of Corporate Planning and the Office of Energy and Environmental Planning are promoting corporate environmental management, utilizing their expertise in environmental issues while providing assistance and guidance to each division (support for independent environmental management).

The Sustainability Promotion Board, which is in principle held twice a year, reviews our environmental management system, the results of which are reflected in the system itself. At the same time, the Kansai Electric Power Group Environmental Management Committee, comprised of representatives from consolidated subsidiaries and equity-method affiliates, usually holds an annual meeting to exchange information on issues concerning our Group's environmental management activities while cooperating as needed with the Sustainability Promotion Board. Environmental management promotion system of the Kansai Electric Power Group

Social

* 51 companies, which are selected from 86 consolidated subsidiaries and 4 equity-method affiliates, excluding those that have low environmental impacts and Kansai Transmission and Distribution, Inc.

Goals

Environmental Management System (list of Eco Action)

Kansai Electric Power Group Eco Action (results in fiscal 2021 and targets for fiscal 2022) Responding to climate change

Itom	FY2	2021	FY 2022
item	Targets	Results	Targets
Advancing efforts to control CO2 emissions	 Keep the top spot for the amount of zero-carbon power generation in Japan Halve CO₂ emissions associated with power generation in Japan in FY 2025 (compared to FY 2013) 	 We kept the top spot for the amount of zero-carbon power generation in Japan (based on surveys and comparisons made in the electric power statistics) Reduction of about 48% from fiscal 2013 levels of CO₂ emissions associated with power generation in Japan (Emissions: About 25.4 million t-CO₂) 	Continued
Continuing safe and stable operation of nuclear power plants*1	Continue safe and stable operation of nuclear power plants (zero unplanned shutdowns)	We continued the safe and stable operations at running plants	Continued
Further development and utilization of renewable energy	pment and newable energy Achieve 6 GW of installed capacity by 2030s (2 GW or more new development in Japan and abroad)		Achieve 5 GW scale of new development and 9 GW scale of cumulative capacity in Japan by 2040
Maintaining and improving the thermal efficiency of thermal power plants*1	• Achieve benchmark indicators* ³ (A: 1.00, B: 44.3%)	We achieved benchmark indicators	Continued
Reducing transmission and distribution loss*2	Maintain or reduce transmission and distribution loss	• 5.3%	Continued
Promoting use of innovative forms of energy among customers and communities	Contribute to making energy use by customers and communities more sophisticated	 We worked to expand use of devices and services that contribute to more sophisticated utilization of energy by customers and communities Smart meters deployed: 0.48 million/year (Cumulative total: 12.74 million), progress rate: about 97% 	Continued
Controlling SF ₆ emissions (calendar year basis) (gas recovery rate upon inspection/removal of equipment)	• 97% (upon inspection) • 99% (upon removal)	• 98.3% (upon inspection) • 99.4% (upon removal)	Continued

*1 Targets and results apply only to the Kansai Electric Power Co., Inc. *2 Targets apply only to Kansai Transmission and Distribution, Inc.

*3 Indicators based on the benchmark system of the Law Concerning the Rational Use of Energy

ENVIRONMENT

inability for the Kansai Electric Power Group	Environment	Social	Governance
	Kansai Electric Powe	er Group Kansai Electric Power Co., Ind	. Kansai Transmission and Distribution, Inc.

Promoting resource circulation

ltem	FY 2	FY 2022	
item	Targets	Results	Targets
Maintaining industrial waste recycling rate*	• 99.5%	• 99.8%	Continued

* Waste plastic reduction program

Results in fiscal 2021 of waste plastic volume: About 290 tonnes by the Kansai Electric Company

About 1,017 tonnes by Kansai Transmission and Distribution

Targets for fiscal 2022: Reduce and recycle waste plastics to as great a degree as possible.

Protecting local community environments

ltem		FY 2	FY 2022	
nem		Targets	Results	Targets
Maintaining sulfur oxide (SOx) and nitrogen oxide (NOx)	SOx	Emission factors: maintain the lowest levels in the world Emissions: strictly adhere to	Overall: 0.027 g/kWh Thermal: 0.054 g/kWh All agreed values were met	Continued
emission factors	NOx	agreed values at each power plant	Overall: 0.042 g/kWh Thermal: 0.084 g/kWh All agreed values were met	Continued
Proper processing of PCB wastes	Proceed process	d with certainty to achieve ing before the legal deadline	Amount of high-level PCB processed (Cumulative total): 5,419*	Continued

* Number of high-voltage transformers, capacitors and other electrical equipment that were subcontracted to the Japan Environmental Storage & Safety Corporation (JESCO).

Conserving biodiversity

ltem	FY 2	2021	FY 2022
item	Targets	Results	Targets
Conservation of biodiversity	Consideration of biodiversity through business activities	 In fiscal 2021, field studies were conducted at four hydropower plants along the Kizu River system in Nara Prefecture to gather data on the habitats of plants and animals. Experts were consulted for guidance and advice where flora with conservation value contributing to biodiversity was identified. 	Continued

Office energy and resource conservation activities (group-wide items)

ltem	Reducing office electricity consumption	Reducing office water consumption	Improving fuel efficiency of company vehicles	Reducing copy paper consumption	
Targets	Reduce by 1% or more from previous year	Reduce as much as possible	Improve as much as possible	Reduce as much as possible	
Non- consolida	(GWh) 80 75 60 40 20 2019 2020 2021 (FY)	(1,000 m ³) 600 400 413 388 392 200 0 2019 2020 2021 (FY)	(km/L) 12.0 11.0 10.95 10.9 10.81 10.0 9.0 2019 2020 2021 (FY)	(t) 800 747 700 662 600 500 500 400 2019 2020 2021 (FY)	
Group	(GWh) 80 60 40 28.1 29.6 29.3 20 2019 2020 2021 (FY)	(1,000 m ³) 600 400 200 108.02 109.06 109.07 0 2019 2020 2021 (FY)	(km/L) 12.0 11.0 <u>10.0</u> 9.83 9.54 9.0 2019 2020 2021 (FY)	(t) 800 700 600 500 525.5 480.2 400 2019 2020 2021 (FY)	

* Calculated for 38 consolidated subsidiaries (excluding Kansai Transmission and Distribution, Inc.) for which three-year data (FY 2019–2021) is available.

Sustainability for the Kansai Electric Power Group	Environment	Social	Governance		
	Kansai Electric Pow	Kansai Electric Power Co., Inc.	Kansai Transmission and Distribution. Inc.		

Efforts

Environmental compliance

Recognizing "strict enforcement of compliance" as part of materiality (important issues), our Group is committed to eliminating any major violations of environmental compliance.

Major violations of environmental compliance reported in fiscal 2019 to 2021 are summarized below.

Major environmental compliance violations

ltam	Targets	Results			
nem	largets	FY 2019	FY 2020	FY 2021	
Major environmental compliance violations	0	4	1	4	

· Major violations of environmental compliance occurred or reported in each fiscal year are included.

"Major violations of environmental compliance" are defined as "violations that have impacted (or could impact) the surrounding environment and/or human health."

Major violations of environmental compliance occurred or reported in fiscal 2021 are summarized below.

Summary of major violations of environmental compliance

Inappropriate processing of transformer parts contaminated with low concentration of PCB during replacement work.
 Inappropriate processing of facilities containing asbestos during replacement work (3 cases identified)

We are implementing efforts to identify root causes, review in-house rules (observance of relevant laws and regulations), and educate employees to prevent any recurrence of these violations.

In addition, details of these incidents are communicated company-wide and preventive measures are shared between all those concerned to prevent similar violations from taking place at other offices.

Sustainability for the Kansai Electric Power Group	Environment		Social		Governance	
	Kansai Electric Pow	er Group	Kansai Electric Power Co., Inc.		Kansai Transmission and Distribution, Inc.	

Performance data

	Eco Action-related		FY 2019	FY 2020	FY 2021
SF ₆ gas emissions			0.1	0.1	0.1
	Upon inspection	t	0.1	0.0	0.0
	• Upon removal		0.0	0.1	0.1
SF ₆ gas recover	y rate				
	• Upon inspection		99.0	99.6	98.3
	• Upon removal	%	99.4	99.3	99.4
Transmission and distribution loss rate*1*2			4.8	5.1	5.3
Number (cumu	lative total) and rate of smart meters installed*2	million %	About 11.53 About 88	About 12.25 About 93	About 12.74 About 97

*1 Transmission and distribution loss rates = (area transmission-end power – area consumption power (end use) – substation power) / area transmission-end power × 100 [%] "Area" in this case refers to the entire supply area of Kansai Transmission and Distribution, Inc. *2 Data of Kansai Transmission and Distribution, Inc. only

Office-ı	related	Unit	FY 2019	FY 2020	FY 2021
	Office electricity consumption*1	GWh	75	74	72
	Office water consumption*1	1,000 m ³	413	388	392
	Fuel efficiency of company vehicles	km/L	10.95	10.9	10.81
Energy and resource conservation (Office division)	Vehicle fuel consumption (gasoline)	1,000 kL	1.9	1.6	1.6
	Vehicle fuel consumption (diesel oil)		0.8	0.8	0.8
	Copy paper consumption	t	747	662	521
CO ₂ emissions resulting from office	Office electricity		2.4	2.6	2.2
	Office water	10,000 t-CO2	0.01	0.01	0.01
activities**	Vehicle fuels		0.6	0.6	0.6

*1 The scope of this calculation was reviewed for the actual consumption amounts of office electricity and water.

*2 CO₂ emissions from office activities = amount of electricity consumption × adjusted emission factor

CO2 emissions from office water consumption = amount of office water consumption × emission factor

CO₂ emissions from vehicle use = amount of vehicle fuel consumption \times emission factor by type of fuel

Material-related, revegetation rate		Unit	FY 2019	FY 2020	FY 2021
Amount of limestone used*1		1,000 t	61	56	71
Amount of ammonia used*1			8	8	7
	Thermal power plants*3		42	42	41
Revegetation rate* ² (end of fiscal year)	Nuclear power plants	%	67	67	66
	Electric power offices (substations)		28	28	28

*1 Data of the Kansai Electric Power Co., Inc. only

*2 Revegetation rate = (business site revegetation area ÷ business site total area) × 100

*3 The method of calculating the area of forests was revised.

Rates of conversion to underground transmission and distribution lines*	Unit	FY 2019	FY 2020	FY 2021
Rate of conversion to underground transmission lines (end of fiscal year)		17.5	17.6	17.6
Rate of conversion to underground distribution lines (end of fiscal year)	70	10.3	10.4	10.4

* Data of Kansai Transmission and Distribution, Inc. only

Sustainabilit	y for the	Kansai	Electric	Power	Group
---------------	-----------	--------	----------	-------	-------

Environmen

Kansai Electric Power Group

Social Governance

Environmental conservation cost

We practice and announce the results of environmental accounting for the Company and Kansai Transmission and Distribution, Inc. as well as those for our group companies, where the costs and effects of environmental conservation in our business activities are determined.

FY 2021 assessment

We invested a total of about 7.5 billion yen in environmental conservation, a year-on-year decrease of about 0.4 billion yen, while the total cost amounted to about 16.17 billion yen, a year-on-year decrease of about 0.29 billion yen, due to a lower radioactive waste processing cost, etc.

Environmental conservation costs (100 million yen)

	Inves	tment	Expe	enses		
Category	FY 2020	FY 2021	FY 2020	FY 2021	Major items	
1. Global environmental conservation costs (CO ₂ reductions, etc.)	0.0	0.0	2.0	2.0	SF ₆ gas collection	
2. Local environmental conservation costs	76	70	38.5	38.3		
					Radiation control and measurement	
(1) Measuring/monitoring environmental impact	5.3	2.3	14.7	13.7	Air quality concentration measurement	
					Marine area surveys	
(2) Pollution control (air pollution, water contamination, oil leakage, etc.)	70.2	68.2	17.1	18.2	Air pollution control measures, water contamination prevention measures	
(3) Nature conservation	0	0	6.8	6.3	Revegetation	
3. Costs to build a circular economy	3.5	4.5	119.6	118.3		
(1) Industrial waste processing, recycling	3.4	4.5	48.4	52.1	Industrial waste processing, PCB processing	
(2) General waste processing, recycling	0	0	0.1	0.0	Paper recycling	
(3) Radioactive waste processing	0	0	71.2	66.0	Low-level radioactive waste processing	
(4) Green purchasing	0.0	0.0	0.0	0.0	Research-related work	
4. Environmental management costs	0	0	0.7	0.6	Environmental reports	
5. R&D costs	0.2	0	3.5	2.4	Load leveling, environmental conservation, energy savings and recycling, natural energy	
6. Other costs	0	0	0.2	0.2	Research Center repairs	
Total	79.2	75.0	164.6	161.7		
Total capital investment during the period	6,558	5,229				
Operating expenses during the period			29,467	27,526		

Note: Based on the Environmental Reporting Guidelines (FY 2005 version) issued by the Ministry of the Environment. Depreciation is not calculated into expenses. Composite costs are tallied proportionally by one of three methods: (1) calculation of differences; (2) proportional division based on rational criteria; and (3) proportional division based on criteria of expediency. Costs involved in generating nuclear power are calculated with the sum of individual measures to protect the environment taken as environmental conservation costs (radiation control and measurement, low-level radioactive waste processing, etc.). Figures may not add up due to rounding off.

ENVIRONMENT

Kansai Electric Power Co., Inc. Kansai Tran

Social

Governance

• Effects of environmental conservation

FY 2021 assessment

The CO₂ emission intensity in fiscal 2021 is estimated to be much lower than that in fiscal 2020. As a leading company in zero-carbon energy, we are committed to operating its nuclear power stations in a safe and stable manner while developing and promoting renewable energy.

These efforts have resulted in a significant reduction in CO₂ emissions, down 48% from fiscal 2013 levels.

SOx and NOx emission intensities also decreased year on year through the optimized use of sulfur and nitrogen scrubbers.

Effects of environmental conservation

Category	ltem (unit)		FY 2020	FY 2021	Year-on-year change
	CO ₂ emissions (basic)	(10,000 t-CO ₂)	3,702	3,006	-696
1. Global environmental	CO ₂ emission intensity (basic)	(kg-CO2/kWh)	0.362	0.299	-0.063
conservation	CO2 emissions (after adjustment)	(10,000 t-CO ₂)	3,583	3,099	-484
	CO ₂ emission intensity (after adjustment)	(kg-CO2/kWh)	0.350	0.308	-0.042
	Air pollution control				
	SOx emissions	(t)	2,098	2,645	547
	SOx emission intensity	(g/kWh)	0.033	0.054	0.021
2. Local environmental conservation	NOx emissions	(t)	4,551	4,125	-426
	NOx emission intensity	(g/kWh)	0.072	0.084	0.012
	Landscape integration		<u>`</u>		
	Revegetation area	(1,000 m ²)	3,102	3,168	66
	Industrial and other waste generated	(1,000 t)	567	681	114
3. Building a circular economy	Recycling rate for industrial waste, etc.	(%)	99.8	99.8	0.0
	Low-level radioactive waste	(Rods)	2,034	-1,577	-426

Note: CO₂ emissions: including from power supplied by other companies; CO₂ emission and CO₂ emission intensity: the results for FY 2021 are provisional and the actual CO₂ emission factor will be officially announced by the government in accordance with the Law Concerning the Promotion of the Measures to Cope with Global Warming, etc.; CO₂ emission factor: by the amount of power sold (adjusted CO₂ emissions include environmental value adjustments under the surplus solar power purchasing system and the renewable energy feed-in tariff system in addition to deduction reflecting carbon credits); SOx and NOx emissions: only the Company's self-generated power; SOx and NOx emission factor: by the amount of power generated by thermal power plants of the Company; Low-level radioactive waste: Net generated amount – reduced amount)

Economic benefits from environmental conservation measures

FY 2021 assessment

Economic benefits increased approximately 2.8 billion yen from the previous year due to an increase of gain on sale of disused articles, etc.

Economic benefits from environmental conservation measures (100 million yen)

	Category	FY 2020	FY 2021	Major items
Revenue	Operating revenues from recycling, etc.	43.7	71.5	Gain on sale of disused articles (recycling)
Cost savings	Cost savings from reuse, recycling, etc.	0.1	0.1	Cost savings from the purchase of recycled items
Total		43.8	71.6	

Kansai Electric Power Co., Inc.

Social

Governance

• Environmental accounting (group companies)

Environmental accounting of group companies

The environmental accounting applies to 18 group companies that participate in the Kansai Electric Power Group Environmental Management Committee (as of FY 2021).

Environmental conservation costs (thousand yen)

Catagony	Mainsiteme		Investment		Expenses	
Category	major terns	FY 2020	FY 2021	FY 2020	FY 2021	
Costs for pollution control	Air, water and soil pollution prevention	0	7,690	51,593	54,634	
Costs for resource recycling	General and industrial waste processing and recycling	0	0	1,325,428	1,461,799	
Costs for management activities	Environmental protection efforts, environmental education and related activities at business places and in their neighborhoods	9,198	1,662	32,178	29,666	
Costs for community activities	Contributions to and support of environmental protection activities and environmental protection organizations outside the company	0	0	0	0	
Costs for research and development	Research and development of products, for example, that contribute to environmental protection	0	0	1,800	1,800	
Costs related to environmental damages	Natural restoration, damage compensation, etc.	0	0	264	255	
Other costs		_	—	0	0	
Total		9,198	9,352	1,411,263	1,548,154	

Environmental conservation effects (physical effects)

Category	ltem (unit)	FY 2020	FY 2021
	CO ₂ emissions (10,000 t-CO ₂)	12.1	16.9
Global and local environmental conservation	SOx emissions (t)	0.6	0.4
	NOx emissions (t)	55.7	59.1
Environmental management	ISO or other external certifications (locations)*	4	5
Building a circular economy	Industrial waste generated (1,000 t)	63.3	84.0

* Cumulative to end of fiscal year

Economic benefits from environmental conservation measures (million yen)

Category	Major items	FY 2020	FY 2021
Revenue	Operating revenues from recycling, etc.	25.9	194.9
Cost savings	Cost savings from reuse, recycling, etc.	0.4	0.4
Total		26.3	195.3

Sustainability for the Kansai Electric Power Group	Environment	Social	Governance
	Kansai Electric Pow	er Group Kansai Electric Power Co. In	c Kansai Transmission and Distribution Inc

Management of chemical substances (PRTR)

Name of taxasted shemical substance	Releases (t/year)			
Name of targeted chemical substance	FY 2019	FY 2020	FY 2021	
	0.0	0.0	0.0	
Aspestos (specifiea)	(0.0)	(0.0)	(0.0)	
Ethylhonzono	8.6	5.9	3.2	
	(8.6)	(5.9)	(3.2)	
Farris chlarida	0.0	0.0	0.0	
	(0.0)	(0.0)	(0.0)	
Vulana	12	9.1	3.7	
	(12)	(9.1)	(3.7)	
Diaving (specified)	0.24 (mg-TEQ/year)	0.11 (mg-TEQ/year)	0.061 (mg-TEQ/year)	
	(0.24 (mg-TEQ/year))	(0.11 (mg-TEQ/year))	(0.061 (mg-TEQ/year))	
1.2.4 trimethylkenzene		<0.1	_	
1,2,4-trimethyloenzene	(—)	(<0.1)	(-)	
Telupe	8.7	5.0	3.6	
	(8.7)	(5.0)	(3.6)	
Understop	<0.1	0.0	<0.1	
Hydrazine	(<0.1)	(0.0)	(<0.1)	
Panzanas (spacified)	<0.1	<0.1	0.1	
benzenes (specified)	(<0.1)	(<0.1)	(0.1)	
Deven composing	0.0	0.0	_	
	(0.0)	(0.0)	(-)	
DCD	0.0	_	_	
	(0.0)	(—)	(-)	
Methyloaphthalapa	1.2	2.3	1.1	
	(1.2)	(2.3)	(1.1)	
Promotrifluoromothano		_	_	
	(-)	(—)	()	
Nanylphanawynalyawyethanal			_	
	(-)	(—)	(-)	
Ethylopodiaminototraacotic acid	0.0	0.0	_	
	(0.0)	(0.0)	()	
Mangapese and its compounds		_	0.0	
	(-)	()	(-)	
2,6-di-tert-butyl-p-cresol	(0.0)	(0.0)	(0.0)	
n-Hexane	(0.0)	(0.0)	(0.0)	

1

Sustainability for the Kansai Electric Power Group

Kansai Electric Power Group

Social

Kansai Electric Power Co., Inc. (Kansai Transmission and Distribution, Inc.

Governance

		Transfers (t/year)	
Name of targeted chemical substance	FY 2019	FY 2020	FY 2021
	1.6	14	4.2
Asbestos (specified)	(1.6)	(14)	(4.2)
	<0.1	0.0	0.0
Ethylbenzene	(<0.1)	(0.0)	(0.0)
	0.9	0.0	0.0
Ferric chloride	(0.9)	(0.0)	(0.0)
	0.4	0.0	0.0
Xylene	(0.4)	(0.0)	(0.0)
	0.0043 (mg-TEQ/year)	0.079 (mg-TEQ/year)	0.0019 (mg-TEQ/year)
Dioxins (specified)	(0.0043 (mg-TEQ/year))	(0.079 (mg-TEQ/year))	(0.0019 (mg-TEQ/year))
	-	0.0	-
I,2,4-trimetnyibenzene	(-)	(0.0)	(-)
	0.8	0.0	0.0
Ioluene	(0.8)	(0.0)	(0.0)
	0.0	0.0	6.3
Hydrazine	(0.0)	(0.0)	(6.3)
5 (K)	0.0	0.0	0.0
Benzenes (specified)	(0.0)	(0.0)	(0.0)
Dana and a state of the state o	0.0	6.9	-
Boron compound	(0.0)	(6.9)	(-)
DCD	2.3	_	-
rCD	(2.3)	(-)	(-)
Methyloaphthalana	0.0	0.0	0.0
meurymaphthalene	(0.0)	(0.0)	(0.0)
Promotrifluoromothana	-		_
bonothidoromethane	(-)	(-)	(-)
Nanylphanow/polyawiethanol	-		_
конурненохуројуохуешаног	(-)	(-)	(-)
Ethulan a diaminata transatis a sid	0.0	0.0	-
Enylehediaminetetraacetic acid	(0.0)	(0.0)	(-)
Manganoso and its compounds	_	_	0.3
	(-)	(-)	(0.3)
2,6-di-tert-butyl-p-cresol	(<0.1)	(<0.1)	(<0.1)
n-Hexane	(2.0)	(2.1)	(1.4)

Notes: • The chart shows total values reported in compliance with the PRTR Law. • "0" indicates no releases or transfers at targeted business sites. • "<0.1" indicates less than 0.1 t/year releases, etc. • "-" indicates no business sites targeted for totaling. • Significant figures are displayed in two digits. • The fource in parentheses includes the results of group companies (exclu • The figures in parentheses includes the results of group companies (excluding those of some group companies)

Sustainability for the Kansai Electric Power Group	Environment	Social	Governance
	Kansai Electric Pow	r Group	Kansai Transmission and Distribution Inc

Radioactive substances, radioactive waste (non-consolidated)

Fiscal year			2019	2020	2021	Unit	
	Evaluated dose	Mihama Nuclear Power Station	N.D.	N.D.	<0.001		
	public in the vicinity	Takahama Nuclear Power Station	N.D.	N.D.	<0.001	millisievert*1	
Gaseous	of power plants (inert gases)	Ohi Nuclear Power Station	N.D.	N.D.	N.D.		
waste Evaluated dose		Mihama Nuclear Power Station	N.D.	N.D.	N.D.		
	public in the vicinity	Takahama Nuclear Power Station	N.D.	N.D.	N.D.	millisievert*1	
of power plants (iodine)		Ohi Nuclear Power Station	N.D.	N.D.	N.D.		
	Evaluated dose	Mihama Nuclear Power Station	<0.001	<0.001	<0.001		
Liquid waste	values for the public in the vicinity	Takahama Nuclear Power Station	<0.001	<0.001	<0.001	millisievert*1	
	of power plants	Ohi Nuclear Power Station	<0.001	<0.001	<0.001		
		Mihama Nuclear Power Station	N.D.	N.D.	50000000		
Radioactiv	ve gaseous waste	Takahama Nuclear Power Station	N.D.	N.D.	7400000	becquerel*2	
discharge	d (inert gas)	Ohi Nuclear Power Station	N.D.	N.D.	N.D.		
		Mihama Nuclear Power Station	N.D.	N.D.	N.D.		
Radioactiv discharge	ve gaseous waste d (iodine)	Takahama Nuclear Power Station	N.D.	N.D.	N.D.	becquerel*2	
	- ()	Ohi Nuclear Power Station	N.D.	N.D.	N.D.		
		Mihama Nuclear Power Station	N.D.	N.D.	N.D.		
Radioactive liquid waste discharged (excluding tritiu		Takahama Nuclear Power Station	N.D.	N.D.	N.D.	becquerel*2	
	, , , , , , , , , , , , , , , , , , ,	Ohi Nuclear Power Station	N.D.	N.D.	N.D.		
		Mihama Nuclear Power Station	860000000000	1100000000000	1400000000000	becquerel*2	
Radioactiv (tritium) d	ve liquid waste lischarged	Takahama Nuclear Power Station	13000000000000	23000000000000	200000000000000		
(thiun) discharged		Ohi Nuclear Power Station	56000000000000	66000000000000	34000000000000		
Radioactive solid waste generated (200-		ited (200-L drum equivalent)*4	12,312	13,223	10,089		
	• Mihama N	uclear Power Station	3,918	3,202	2,469	Equivalent	
• Takahama • Ohi Nuclea		Nuclear Power Station	4,624	6,516	4,905	in drums	
		ar Power Station	3,770	3,505	2,715		
Radioacti	ve solid waste reduce	ed (200-L drum equivalent)*⁵	11,805	11,189	11,666		
	• Mihama N	uclear Power Station	2,946	2,409	2,196	Equivalent	
	• Takahama	Nuclear Power Station	3,959	5,715	5,451	in drums	
	Ohi Nuclea	ar Power Station	4,900	3,065	4,019		
Amount of solid radioactive waste generated – Amount of solid radioactive waste reduced (200-L drum equivalent)*6		507	2,034	-1,577			
• Mihama Nu • Takahama		uclear Power Station	972	793	273	Equivalent	
		Nuclear Power Station	665	801	-546	in drums	
Ohi Nuclear Power Station		-1,130	440	-1,304			
Cumulative amount of solid radioactive waste stored (200-L drum equivalent)*7*8		100,818	102,853	101,276			
	• Mihama N	uclear Power Station	27,144	27,938	28,211	Equivalent	
	• Takahama	Nuclear Power Station	44,888	45,689	45,143	in drums	
Ohi Nuclea		ar Power Station	28,786	29,226	27,922		

N.D.: Not Detectable

*2 Becquerel: unit of radioactivity (one becquerel is defined as one nucleus decaying per second, representing the rate at which radioactive material emits radiation.)

*3 Notes 4-7 are for the storage status at power plants.

*4 The amount of solid low-level radioactive waste produced in the fiscal year.
*5 The total of amount of solid waste with low-level radioactivity reduced through incineration, etc. and transported out of facilities in the fiscal year.
*6 The net increase of solid waste with low-level radioactivity calculated by deducting the amount reduced from the amount generated in the fiscal year.

*7 Cumulative amount of low-level solid radioactive waste

*8 Totals might not match due to rounding after conversion to drum equivalent.

^{*1} Millisievert (effective dose): unit indicating the degree of radiation's effect on the human body

Sustainability for the Kansai Electric Power Group	Environment	Social		Governance
	Kansai Electric Powe	er Group Kansai Electric Power Co., I	пс.)	(Kansai Transmission and Distribution, Inc.)

• Environmental protection records at thermal power plants

Item			Sakaiko Power Station	Nanko Power Station	Miyazu Energy Research Center	Kansai International Airport Energy Center	Maizuru Power Station	Gobo Power Station	Himeji No.1 Power Station 5, 6 U & GT 1, 2 U	Himeji No. 2 Power Station	Aioi Power Station	Ako Power Station	
Main fuel			L	L	Heavy/crude	Kerosene	Coal	Heavy/crude	L	L	L	Heavy/crude	
		Amount emitted hourly (m³N/h)	Air Pollution Control Law (total amount regulation)	84	98	306*1	13	515*1	6,510*3	129	195	2,757*3	2,158*3
			Agreed value	_	_	112	_	255	184	—	_	165	180
			Actual value	-	_	Stopped	—	186	90	_	_	0	62
	Sulfur	Amount emitted daily (t/d)	Agreed value	10.1	_	-	_	_	-	—	_	-	_
	oxides		Actual value	-	_	-	-	-	-	—	-	-	_
		Amount emitted annually (t/y)	Agreed value	940	_	492 × 10³m³N	_	1,523 × 10³m³N	970 × 10³m³N	_	_	885 × 10³m³N	650 × 10³m³N
			Actual value	_	_	Stopped	_	815 × 10³m³N	46.650 × 10³m³N	_	_	0.263 × 10³m³N	64.7 × 10³m³N
		Amount emitted	Air Pollution Control Law (total amount regulation)	625	255	_	_	_	_	_	_	_	_
Air		hourly	Agreed value	-	_	58	-	244	110	123.5	70.8	85	94
quality		(m³N/n)	Actual value	41.9	31	Stopped	-	216	47	45	63	41	69
TCIALCU	Nitrogen	Amount emitted daily	Agreed value	7.7	1.8	_	-	-	_	_	-	-	_
	oxides	(t/d)	Actual value	1.8	0.8	-	-	-	-	-	-	-	-
		Amount emitted annually (t/y)	Agreed value	1,420	400	244 × 10³m³N	_	1,457 × 10³m³N	560 × 10³m³N	701 × 10³m³N	497 × 10³m³N	390 × 10³m³N	340 × 10³m³N
			Actual value	404	75	Stopped	-	1,285 × 10³m³N	43.981 × 10³m³N	93.64 × 10³m³N	262 × 10³m³N	23.0 × 10³m³N	102.6 × 10³m³N
		Emission concentration (g/m³N)	Air Pollution Control Law	0.04	0.03	0.05	0.05	0.1	0.07	0.05	0.05	0.07	0.05
	Soot particles		Agreed value	0.02	Not emitted	0.014	_	0.009	0.01	_	_	0.015	0.015
			Actual value	<0.002	<0.002	Stopped	—	0.005	0.002	—	<0.002	0	0.004
	Hydrogen ion concentration index		Water Pollution Control Law and ordinances	5.8-8.6	5.0-9.0*²	5.0-9.0	_	5.0-9.0	_	5.0-9.0	5.0-9.0	5.0-9.0	5.0-9.0
			Agreed value	_	_	5.8-8.6	_	5.8–8.6	5.8-8.6	5.8–8.6	5.8–8.6	5.8–8.6	5.8-8.6
			Actual value	7.7	8.2	5.8-8.0	-	6.5–7.5	6.2-8.1	7.0–7.7	6.9–7.7	6.7–7.5	6.2–7.5
		Highest	Water Pollution Control Law and ordinances	12	_	160	_	160	_	70	70	70	70
		concentration	Agreed value	-	-	15	-	15	10	15	15	15	15
	Water quality related Amount of	(IIIg/L)	Actual value	3.2	-	7.8	-	5.2	6.7	1.8	6.6	3	2.9
Water		Pollution load amount (kg/d)	Water Pollution Control Law and ordinances	209.2	_	_	_	_	_	38.8	54.6	67.8	85.5
quality related			Agreed value	_	_	20.8	_	22	36.8	15.2	35	18	22.4
related			Actual value	21.45	-	0.2	-	5.80	19.6	2.4	22.2	3.1	2.4
		Highest concentration (mg/L)	Water Pollution Control Law and ordinances	50	600*2	200	_	200	_	90	90	90	90
	suspended solids		Agreed value	_	_	20	-	15	20	20	20	20	20
			Actual value	<5	8	3	-	3	1.1	1	<5	1	<1
	Amount of inclusion of	Highest	Water Pollution Control Law and ordinances	2	4*2	5	_	5	_	5	5	5	5
	n-hexane extractable	(mg/L)	Agreed value	_	_	1	_	1	1	1	1	1	1
substances		Actual value	<1	<1.0	0.7	-	<1.0	0.4	0.1	<1	0.1	<0.5	

*1 Regulated value of Kyoto Prefecture ordinance execution rules to protect and nurture the environment *2 Regulated value of Osaka City sewer ordinance execution rules *3 Regulated K value

Sustainability for the Kansai Electric Power Group	Environment	Social	Governance		
	Kansai Electric Pow	Kansai Electric Power Co. Inc	Kansai Transmission and Distribution. Inc		

Status overview of our business activities and environmental load (FY 2021 results)

Input Fuels for power generation 3,597,000 t (dry coal weight) Coal Fuels for thermal power generation Heavy oil 683,000 kL 176,000 kL Crude oil LNG (liquefied natural gas) 4,319,000 t Wood pellets 3,000 kL (heavy oil equivalent) 181,000 kL Other (heavy oil equivalent) Fuels for nuclear power 30 tU generation (weight of pre-irradiation uranium) Water for power generation Industrial water 2.51 million m³ 1.28 million m³ Clean water River water, groundwater, etc. 0.44 million m³ Seawater (desalinated) 2.79 million m³ Resources Limestone 71,000 t Ammonia 7,000 t Office Office electricity 72 GWh 0.39 million m³ Office water 521 t Copy paper Vehicle fuels Gasoline 1,400 kL Diesel oil 400 kL

Note 1: Totals may not sum due to rounding.

Note 2: Thermal power generation figures do not include biomass power generation.

 *2 The results for FY 2021 are provisional; the actual CO₂ emission factor will be officially announced by the government in accordance with the Law Concerning the Promotion of the Measures to Cope with Global Warming, etc.

- *3 Emissions reflecting carbon credits, etc.
- *4 CO₂ conversion

Output						
Released into atmosphere						
CO2 N2O SF6 (SO2 NO	(carbon dioxide) ^{#1#2} 3 (nitrous oxide) ^{#4} sulfur hexafluoride) ^{#4} ((sulfur oxides) X (nitrogen oxides)	20,060,000 t-CO ₂ *2 30,990,000 t-CO ₂ ***3 23,000 t-CO ₂ 38,500 t-CO ₂ 2,645 t 4,125 t				
CO Tot	Released into v D emissions tal effluents	water areas 23 t 4.12 million m³				
	Radioactive	e waste				
Low-level radioactive waste generated* -1,577 drums						
* Net generation (generated amount – reduced amount)						
Industrial waste, etc.						
То	Total amount 681,000 t					
Processing classification	Recycling Reduction in intermediate treatme Final disposal Recycling rate	680,000 t nt 0 t 1,200 t 99.8%				
Total emissions resulting from office activities						
akdown	Office electricit (0.308 kg-CO2/kWh)	y 22,152 t-CO ₂				
Emissions brea	Office water (0.23 kg-CO ₂ /m ³) Vehicle fuels (Gasoline: 2.322 kg-CO: (Diesel oil: 2.585 kg-CO	90 t-CO2 2/L) 5,637 t-CO2 2/L)				

100.7 TWh

Electric power sold

The figures in parentheses refer to CO₂ emission factors, while the figure for office electricity is the emission factor after reflecting carbon credits, etc.

Customers

