Environmental Data 2017

Environmental accounting (KEPCO)

KEPCO has introduced environmental accounting both on a non-consolidated basis and for group companies to clarify the costs of environmental conservation in our business activities and the benefits achieved.

FY2016 assessment

Environmental conservation costs

For environmental conservation costs, investments were about 12 billion yen, 3 billion less than the previous fiscal year. Due to PCB processing costs and other cost reduction efforts, expenses were about 20 billion yen, which is about 2 billion yen less than the previous fiscal year.

	Invest	tment	Expe	enses	
Category	FY2015	FY2016	FY2015	FY2016	Major Items
1. Global environmental conservation costs (CO2 reductions, etc.)	13.3	8.5	2.2	1.9	SF6 gas collection
2. Local environmental conservation costs	134.0	109.0	49.6	46.8	
(1) Measuring/monitoring environmental impact	0.9	1.9	9.6	11.4	Radiation control and measurement, air quality concentration measurement, marine area surveys
(2) Pollution control (air pollution, water contamination, oil leakage, etc.)	133.1	106.8	32.5	27.6	Air pollution control measures, water contamination prevention measures
(3) Nature conservation	0.0	0.0	7.5	7.8	Revegetation
3. Costs to build a circular economy	3.7	3.4	155.5	140.5	
⁽¹⁾ Industrial waste processing, recycling	3.7	3.3	80.0	65.7	Industrial waste processing, PCB processing
⁽²⁾ General waste processing, recycling	0.0	0.0	0.1	0.1	Paper recycling
(3) Radioactive waste processing	0.0	0.0	75.4	74.7	Low-level radioactive waste processing
(4) Green purchasing	0.0	0.1	0.0	0.0	Research-related work
4. Environmental management costs	0.0	0.0	1.3	1.1	Environmental reports
5. R&D costs	0.0	0.2	4.8	4.3	Load leveling, environmental conservation, energy savings and recycling, natural energy
6. Other costs	0.4	0.0	0.3	0.2	Research Laboratory repairs
Total	151.4	120.7	213.7	194.9	
Total capital investment during the period	2,541	2,324	-	-	

Environmental conservation costs (100 million yen)

Operating expenses during period	-	-	26,597	24,499	
----------------------------------	---	---	--------	--------	--

Note: Based on the Environmental Reporting Guidelines (FY2012 version) issued by the Ministry of the Environment. Depreciation is not calculated into expenses. Composite costs are tallied proportionally by one of three methods: (1) calculation of differences; (2) proportional division based on rational criteria; (3) proportional division based on criteria of expediency. Costs involved in generating nuclear power are calculated with the sum of individual measures to protect the environment taken as environmental conservation costs (radiation control and measurement, low-level radioactive waste processing, etc.). Figures may not add up due to rounding off.

Effects of environmental conservation

Despite the reduced utilization ratios of nuclear power and hydroelectric power and other negative factors compared to the previous fiscal year, the CO₂ emission intensity was approximately the same as the previous fiscal year. This result was due to the increased utilization rate of high-efficiency natural gas power generation equipment at the Himeji No. 2 Power Station and the beginning of natural gas use at the Aioi Power Station as well as the increased use of renewable energy using a feed-in tariff system and other efforts for carbon reduction.

Moreover, the SOx and NOx emission intensities improved over the previous fiscal year as a result of the reduction in the ratio of the amount of power generated by units that burn only oil and do not have desulfurization equipment installed among the entire amount of thermal power generation.

Category	ltem (unit)		FY2015	FY2016	Year-on-year change
	CO2 emissions (before carbon credits)	(10,000 t-CO2)	6,487	6,179	-308
1. Global environmental	CO2 emissions intensity (before carbon credits)	(kg- CO2/kWh)	0.509	0.509	0
conservation	CO2 emissions (after carbon credits)	(10,000 t-CO2)	6,331	5,989	-342
	CO2 emissions intensity (after carbon credits)	(kg- CO2/kWh)	0.496	0.493	-0.003
	Air pollution control				
	SOx emissions	(t)	4,735	3,635	-1,100
2. Local	SOx emissions intensity	(g/kWh)	0.055	0.043	-0.012
environmental	NOx emissions	(t)	7,397	6,528	-869
conservation	NOx emissions intensity	(g/kWh)	0.085	0.077	-0.008
	Landscape integration		-		
	Revegetation area	(1,000 m ²)	3,512	3,425	-87
	Industrial waste and other emissions	(1,000 t)	670	708	38
3. Building a circular economy	Recycling rate for industrial waste, etc.	(%)	99.9	99.7	-0.2
	Low-level radioactive waste processing	(Rods)	-6,021	-2,598	3,423

Environmental conservation effects

Note: CO2 emissions: including from power supplied by other companies; SOx and NOx emissions: only KEPCO-generated power; CO2 emissions coefficient: by amount of power sold; SOx and NOx emissions coefficient: by amount of power generated by KEPCO thermal power plants

Economic benefits from environmental conservation measures

Economic benefits increased approximately 600 million yen from the previous year due to a reduction in results from efforts that lead to cost savings.

	Category	FY2015	FY2016	Major Items
Revenue	Operating revenues from recycling, etc.	17.2	23.2	Gain on sale of disused articles (recycling)
Cost savings	Cost savings from reuse and recycling, etc.	0.1	0.1	Cost savings from the purchase of recycled items
	Total	17.3	23.3	

Economic benefits from environmental conservation measures (100 million yen)

Environmental efficiency

Environmental efficiency (with FY1990 as the base year) is calculated to indicate the relationship between environmental load and economic value.

Environmental efficiency for fiscal 2016 include scores of 119 for electric power sold/composite index, which is an increase of 4 points from the previous fiscal year, and 69 for electric power sold/CO₂ emissions, which is roughly the same. Main factors for this included reductions in CO₂, SOx and NOx emissions intensities and a decrease in fuel consumption.

Environmental efficiency graph

Note: LIME2 integration coefficients developed by the National Institute of Advanced Industrial Science and Technology have been used for calculations since fiscal 2007.

Environmental accounting (group companies)

Environmental accounting in group companies

Environmental conservation costs (million yen)

Environmental accounting figures are totaled for group companies represented on the Group Environmental Management Committee in FY2016, composed of 18 companies.

Expenses

Investment **Major Items** Category FY2015 FY2016 FY2015 FY2016 Ato such as a start of the allocation Casha fa u sa allusti

Costs for pollution control	Air, water and soil pollution prevention	6.3	4.5	32.1	35.9
Costs for resource recycling	General and industrial waste processing and recycling	-	0.0	724.5	723.8
Costs for management activities	Environmental protection efforts, environmental education and related activities at business places and in their neighborhoods	0.1	-	182.8	205.0
Costs for community activities	Contributions to and support of environmental protection activities and environmental protection organizations outside the company	-	-	11.2	0.7
Costs for research and development	Research and development of products, for example, that contribute to environmental protection	-	-	10.6	3.0
Costs related to environmental damages	Natural restoration, damage compensation, etc.	-	-	0.3	0.3
Other costs		-	-	0.3	0.1
	Total	6.5	4.5	961.8	968.7

Environmental conservation effects (physical effects)

Category	ltems (unit)	FY2015	FY2016
Environmental management	ISO or other external certifications (locations)*	45	45
Global and local environmental	CO2 emissions (10,000 t-CO2)	14	12
conservation	SOx emissions (t)	0.4	0.4
	NOx emissions (t)	25	29
Building a circular economy	Industrial waste emissions (1,000 t)	97	115

* Cumulative to end of fiscal year

Economic benefits from environmental conservation effects (million yen)

	Category	FY2015	FY2016
Revenue	Business income from recycling	1,223.9	896.5
Cost savings	Cost savings from re-use and recycling, etc.	0.2	0.2
	Total	1,224.1	896.7

Environment-related data

Initiatives contributing to the realization of a low-carbon society

(by amount of o CO2 emissions (by amount of o J Reference Greenhouse ga other than CO2 Utilization rate	(after adjust coefficient (electric pov coefficient electric pov Global CO2 Japan's CO2 Electric power ndustry*6	tment)* ² end use) (before adjustment) ver sold)* ³ (end use) (after adjustment) ver sold)* ³ emissions ^{*4} emissions ^{*5} CO2 emissions (before carbon credits, etc.) CO2 emissions (after carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) (by amount of electric power sold) CO2 emissions coefficient (after carbon credits, etc.) (by amount of electric power sold) N2O (dinitrogen oxide)* ⁷ SF6 (sulfur hexafluoride)* ⁷	7,280 6,731 0.514 0.475 316 12.96 4.94 4.17 0.569 0.481	7,325 7,251 0.522 0.516 321 13.12 4.94 4.93 0.567	7,141 7,029 0.531 0.523 324 12.65 4.70 4.69 0.553	6,487 6,331 0.509 0.496 - 12.27 4.44 4.41 0.534	6,179 5,989 0.509 0.493 - - - -	10,000 t-CO2 10,000 t-CO2 kg- CO2/kWh 100 million t-CO2 100 million t-CO2
CO2 emissions CO2 emissions (by amount of of CO2 emissions (by amount of of greenhouse ga other than CO2 Utilization rate Net thermal eff Total energy us	(after adjust coefficient (electric pov coefficient electric pov Global CO2 Japan's CO2 Electric power ndustry*6	tment)* ² end use) (before adjustment) ver sold)* ³ (end use) (after adjustment) ver sold)* ³ emissions ^{*4} emissions ^{*5} CO2 emissions (before carbon credits, etc.) CO2 emissions (after carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) (by amount of electric power sold) CO2 emissions coefficient (after carbon credits, etc.) (by amount of electric power sold) N2O (dinitrogen oxide)* ⁷ SF6 (sulfur hexafluoride)* ⁷	6,731 0.514 0.475 316 12.96 4.94 4.17 0.569 0.481	7,251 0.522 0.516 321 13.12 4.94 4.93 0.567	7,029 0.531 0.523 324 12.65 4.70 4.69	6,331 0.509 0.496 - 12.27 4.44 4.41	5,989 0.509	10,000 t-CO2 kg- CO2/kWh 100 million t-CO2 100 million t-CO2
CO2 emissions (by amount of of CO2 emissions (by amount of of D) amount of O D) amount of O D) amount of D) am	coefficient (electric pov coefficient electric pov Global CO2 Japan's CO2 Electric power ndustry* ⁶ ases 2 of nuclear ficiency of t	end use) (before adjustment) ver sold)* ³ (end use) (after adjustment) ver sold)* ³ emissions ^{*4} emissions ^{*5} CO2 emissions (before carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) (by amount of electric power sold) CO2 emissions coefficient (after carbon credits, etc.) (by amount of electric power sold) N2O (dinitrogen oxide)* ⁷ SF6 (sulfur hexafluoride)* ⁷	0.514 0.475 316 12.96 4.94 4.17 0.569 0.481	0.522 0.516 321 13.12 4.94 4.93 0.567	0.531 0.523 324 12.65 4.70 4.69	0.509 0.496 - 12.27 4.44 4.41	0.509	kg- CO2/kWh 100 million t-CO2 100 million t-CO2
(by amount of of Reference Greenhouse ga other than Co2 Utilization rate Net thermal eff Total energy us Thermal fuel	electric pov Global CO2 Japan's CO2 Electric power ndustry*6 ases 2 of nuclear ficiency of t	ver sold)* ³ emissions ^{*4} emissions ^{*5} CO2 emissions (before carbon credits, etc.) CO2 emissions (after carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) (by amount of electric power sold) CO2 emissions coefficient (after carbon credits, etc.) (by amount of electric power sold) N2O (dinitrogen oxide)* ⁷ SF6 (sulfur hexafluoride)* ⁷ power facilities ^{*8}	316 12.96 4.94 4.17 0.569 0.481	321 13.12 4.94 4.93 0.567	324 12.65 4.70 4.69	- 12.27 4.44 4.41		CO2/kWh 100 million t-CO2 100 million t-CO2 100 million
Reference F in Greenhouse ga other than CO2 Utilization rate Net thermal eff Total energy us Thermal fuel	Japan's CO2 Electric power industry* ⁶ ases 2 of nuclear ficiency of t	emissions*5 CO2 emissions (before carbon credits, etc.) CO2 emissions (after carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) (by amount of electric power sold) CO2 emissions coefficient (after carbon credits, etc.) (by amount of electric power sold) N2O (dinitrogen oxide)*7 SF6 (sulfur hexafluoride)*7 power facilities*8	12.96 4.94 4.17 0.569 0.481	13.12 4.94 4.93 0.567	12.65 4.70 4.69	4.44	-	t-CO2 100 million t-CO2 100 million
Reference F in Greenhouse ga other than CO2 Utilization rate Net thermal eff Total energy us Thermal fuel	Electric power industry* ⁶ ases of nuclear ficiency of t	CO2 emissions (before carbon credits, etc.) CO2 emissions (after carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) (by amount of electric power sold) CO2 emissions coefficient (after carbon credits, etc.) (by amount of electric power sold) N2O (dinitrogen oxide)* ⁷ SF6 (sulfur hexafluoride)* ⁷ power facilities* ⁸	4.94 4.17 0.569 0.481	4.94 4.93 0.567	4.70 4.69	4.44	-	100 million t-CO2 100 million
Greenhouse ga other than CO2 Utilization rate Net thermal eff Total energy us Thermal fuel	oower ndustry* ⁶ ases of nuclear ficiency of t	(before carbon credits, etc.) CO2 emissions (after carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) (by amount of electric power sold) CO2 emissions coefficient (after carbon credits, etc.) (by amount of electric power sold) N2O (dinitrogen oxide)* ⁷ SF6 (sulfur hexafluoride)* ⁷ power facilities* ⁸	4.17 0.569 0.481	4.93 0.567	4.69	4.41	-	100 million
Greenhouse ga other than CO2 Utilization rate Net thermal eff Total energy us Thermal fuel	oower ndustry* ⁶ ases of nuclear ficiency of t	CO2 emissions (after carbon credits, etc.) CO2 emissions coefficient (before carbon credits, etc.) (by amount of electric power sold) CO2 emissions coefficient (after carbon credits, etc.) (by amount of electric power sold) N2O (dinitrogen oxide)* ⁷ SF6 (sulfur hexafluoride)* ⁷ power facilities* ⁸	0.569	0.567			-	
Greenhouse ga other than CO2 Utilization rate Net thermal eff Total energy us Thermal fuel	oower ndustry* ⁶ ases of nuclear ficiency of t	CO2 emissions coefficient (before carbon credits, etc.) (by amount of electric power sold) CO2 emissions coefficient (after carbon credits, etc.) (by amount of electric power sold) N2O (dinitrogen oxide)* ⁷ SF6 (sulfur hexafluoride)* ⁷ power facilities* ⁸	0.481		0.553	0.534		
other than CO2 Utilization rate Net thermal eff Total energy us Thermal fuel	of nuclear ficiency of t	(after carbon credits, etc.) (by amount of electric power sold) N2O (dinitrogen oxide)* ⁷ SF6 (sulfur hexafluoride)* ⁷ power facilities* ⁸		0 567		0.554	-	kg-
other than CO2 Utilization rate Net thermal eff Total energy us Thermal fuel	of nuclear ficiency of t	SF6 (sulfur hexafluoride)*7 power facilities*8		0.507	0.552	0.531	-	CO2/kWh
Utilization rate Net thermal eff Total energy us Thermal fuel	of nuclear ficiency of t	power facilities*8	2.8	2.6	2.9	2.7	2.8	10,000 t-CO2
Net thermal eff Total energy us Thermal fuel	ficiency of t		5.3	4.9	5.0	4.4	4.8	10,000 t-CO2
Total energy us Thermal fuel			17.7	10.9	0.0	1.0	0.0	%
Thermal fuel	Se*10	hermal power facilities*9	44.2	44.6	46.5	46.6	47.6	%
			733,617,156	765,923,443	760,782,346	701,315,529	675,113,029	GJ
		Coal	4,237	3,890	4,034	3,871	4,163	1,000 t
		Heavy oil	178	289	332	193	275	1,000 kL
		Crude oil	5,375	6,044	4,240	3,366	1,358	1,000 kL
		LNG	7,377	7,729	8,824	8,319	8,686	1,000 t
		Wood pellets	19	19	17	18	18	1,000 kL (equivalent in heavy oil)
		Other	0.4	0.2	0.1	0.6	460	1,000 kL (equivalent in heavy oil)
Fuel for nuclear (weight of pre-			-	-	-	61	-	tU
Hydroelectric p	oower static	on replacement	0	10	0	2,744	0	kW
Power distribut	tion loss rat	e*11	5.9	5.1	5.4	5.2	5.5	%
SF6 gas emissio	ons							
 Upon insp 	ection		0.3	0.2	0.1	0.1	0.1	t
 Upon remo 	oval		0	0	0	0	0	t
SF6 gas collecti	ion rate							
 Upon insp 	ection		99.2	99.1	98.8	99.1	99.3	%
 Upon remo 	oval		99.4	99.4	99.5	99.2	99.6	%
State of develop of new energy s (Cumulative by	sources	ntroduction nd at KEPCO facilities)*12	10,849	11,357	11,815	11,000	11,000	
•Solar powe	er generatio	วท	10,696	11,204	11,662	11,000	11,000	kW
•Wind pow	-		153	153	153	0	0	l .
•Fuel cell ba	-		1	0	0	0	0	I
		Office electricity use*13	83	85	79	78	80	GWh
		Everyday water use*13	538	473	461	424	454	1,000 m ³
Energy and		Vehicle fuel costs	10.35	10.44	10.73	11.13	11.13	km/L
resource saving (Office division		Vehicle fuel use (gasoline)	2.8	2.7	2.6	2.3	2.2	1,000 kL
(Office division))	Vehicle fuel use (diesel)	0.5	0.5	0.5	0.3	0.3	1,000 kL
		Copier paper use	995	873	839	908	961	t
							86.4	%
Low-pollution	ution vehicle introduction rate ^{*14} 87.2 87.5 86.1 86.2		3.9	4.4	4.2	3.9		
	vehicle intr		0.01		7.4		3 0	10.000 t-CO2
Low-pollution CO ₂ emissions from office	vehicle intr	Office electricity Everyday water		0.01	0.01	0.01	3.9 0.01	10,000 t-CO2 10,000 t-CO2

Environmental Data 2017

- *1 The amount of CO₂ emissions is the amount produced from consumption of fuel used for power generation by thermal power plants and includes that for power purchased from other companies.
- *2 After adjustment figures include deductions that reflect CO2 credits as well as environmental value adjustments based on the purchasing system for surplus solar and the purchasing system for total amounts of renewable energy in the CO2 emissions amounts.
- CO2 emissions amount = CO2 emissions amount (before adjustment) + feed-in tariff adjustment CO2 emissions amount, etc.
 CO2 emissions coefficient (end use) is the amount of CO2 emissions per kWh of Kansai Electric Power Company electricity used. CO2 emissions coefficient (end use) (before adjustment) = amount of CO2 emissions (before adjustment) ÷ electricity sales volume

CO2 emissions coefficient (end use) (after adjustment) = amount of CO2 emissions (after adjustment) ÷ electricity sales volume

- *4 Global CO2 emissions: IEA "CO2 Emissions From Fuel Combustion" 2015 Edition
- *5 Japan's CO2 emissions: Source: Greenhouse Gas Inventory Office of Japan (Center for Global Environmental Research, National Institute for Environmental Studies)
- *6 Sources for CO2 emissions and CO2 emission coefficients for the electric power industry are resources from the Industrial Structure Council and materials from the Natural Resources and Energy Working Group of the Electric Power Council for a Low Carbon Society (ELCS). (Through fiscal 2014, the total of results of the Federation of Electrical Power Companies of Japan and volunteering PPS (power producer and supplier) companies are used. In fiscal 2015, the results of 39 companies that undertook business activities that fiscal year among member businesses of the ELCS are used.)
- *7 Published in FY2010 results; figures are CO2 equivalents
- *8 Utilization rate of nuclear power facilities = amount of power generated ÷ (permitted output × calendar hours) × 100
- *9 Net thermal efficiency of thermal power facilities = (amount of power transmitted × quantity of heat per kWh) ÷ total amount of input heat (lowest heat value standard) × 100
- *10 Figures reported to the government based on the Act on the Rational Use of Energy. (Fossil fuel used, purchased electricity, purchased heat)
- *11 Power distribution loss rate = [1 {(amount of power sold + amount of power at transformer substation) ÷ (generated and purchased electric power – amount of power at KEPCO power plants)}] × 100
- *12 Actual figures for FY2014 include equipment used by the company.
- *13 The scope for calculation of office electricity use and everyday water use has been revised.
- *14 Rate of introduction of low-pollution vehicles = No. of low-pollution vehicles purchased \div Total no. of vehicles \times 100
- *15 CO2 emissions from office activities = amount of electricity used × CO2 emissions coefficient after carbon credits, etc. CO2 emissions from everyday water use = amount of everyday water used × emissions coefficient CO2 emissions from vehicle use = amount of vehicle fuel used × coefficient by type of fuel

Source: Ministry of the Environment, Summary of Energy & Economic Statistics

Initiatives contributing to the realization of a recycling-oriented society

Fisca	Fiscal year			2014	2015	2016	Unit
Amount of Industrial Waste and	d Other Emissions	790.9	747.1	698.6	670.2	707.9	
 Soot particles (Heavy/crud 	 Soot particles (Heavy/crude oil ash, coal ash, etc.) 			474.3	443.8	480.6	
 Sludge (Desulfogypsum, wastewater processing sludge, etc.) 			156.9	143.2	141.9	141.1	
 Cinders 		33.9	29.7	27.4	28.8	28.0	
•Demolition debris (Waste concrete utility pole	es, etc.)	18.1	19.3	20.6	23.8	18.3	1,000 t
 Metal scraps 		27.1	42.4	21.7	20.6	28.9	
•Glass/ceramic scraps (Thermal insulation scraps,	insulator scraps, etc.)	2.6	2.7	2.5	2.2	2.6	
• Waste oil		8.5	3.4	2.4	2.2	2.4	
Waste plastic			1.2	1.0	0.8	0.8	
•Other			14.5	5.1	6.0	5.4	
Amount of industrial waste for landfill disposal			1.3	1.2	0.9	1.8	
•Glass/ceramic scraps (Thermal insulation scraps,	 Glass/ceramic scraps (Thermal insulation scraps, insulator scraps, etc.) 		0.11	0.12	0.10	0.33	
 Sludge (Wastewater proce 	ssing sludge, etc.)	0.55	0.73	0.74	0.47	0.34	
 Demolition debris 		0.04	0.09	0.11	0.03	0.02	1,000 t
 Cinders 		0.0	0.0	0.0	0.0	0.0	
Waste plastic		0.07	0.23	0.07	0.09	0.07	
Metal scraps		0.06	0.10	0.05	0.10	0.55	
•Other			0.06	0.13	0.14	0.52	
Industrial waste recycling rate*	1	99.9	99.8	99.8	99.9	99.7	%
Low-concentration PCB industrial waste	Insulating oil	7.7	7.7	7.7	7.7		10,000 kL
Amount processed ^{*2} (utility pole transformers)	Transformer cases	18.6	20.6	22.7	Approx. 24 (after processing)	-	10,000 units

*1 Industrial waste recycling rate = [(Industrial waste and other emissions - Amount of landfill disposal) ÷ (Industrial waste and other emissions)] ×100

*2 Processing at pole-mounted transformer case recycling center was completed in July 2015.

Promotion of environmental protection in local communities

(covers only Kansai Electric Power)

	Fiscal year	2012	2013	2014	2015	2016	Unit
SOx emissions*1		6,230	7,089	5,635	4,735	3,635	t
SOx emissions inte	nsity (for KEPCO-generated power)*2	0.054	0.062	0.052	0.046	0.037	
	nsity (by volume of power from thermal (for KEPCO-generated power)* ³	0.072	0.077	0.059	0.055	0.043	g/kWh
NOx emissions*4		9,448	10,013	8,221	7,397	6,528	t
NOx emissions inte	ensity (for KEPCO-generated power)* ²	0.082	0.087	0.076	0.072	0.067	
NOx emissions intensity (by volume of power from thermal power generation) (for KEPCO-generated power)*3		0.109	0.108	0.086	0.085	0.077	g/kWh
Amount of limestone used		92	87	79	74	77	1,000 t
Amount of ammonia used		13	14	15	14	14	1,000 t
COD emissions*7		23	27	18	21	21	t
Amount of industrial water used (for power generation)		467	446	431	453	430	10,000 m ³
Amount of service	water used (for power generation)	203	222	205	197	166	10,000 m ³
River water, groun	dwater	40	42	40	36	29	10,000 m ³
Seawater (desalina	ted)	282	263	245	255	262	10,000 m ³
Revegetation	Thermal power plants	37	37	38	37	37	
rate*8	Nuclear power plants	77	75	74	73	71	%
(end of fiscal year)	Electric power offices (substations)	28	28	28	28	28	
Rate of conversion to underground transmission lines (end of fiscal year)		19.5	19.5	17.1	17.3	17.2	%
Rate of conversion (end of fiscal year)	to underground distribution lines	10.0	10.1	10.1	10.2	10.2	%

*1 This is calculated from amounts of sulfur in fuel as well as SOx concentrations in gas emissions (measured values) and gas emission volumes. (Some previous fiscal year amounts were calculated from the amount removed by desulfurization equipment.)

*2 SOx emissions intensity (for KEPCO-generated power) = SOx emissions amount ÷ power generated amount (for KEPCO-generated power)

*3 SOx emissions intensity (by volume of power from thermal power generation (for KEPCO-generated power)) = SOx emissions amount ÷ volume of power from thermal power generation (for KEPCO-generated power)

*4 This is calculated from SOx concentrations in gas emissions (measured values) and gas emission volumes.

*5 NOx emissions intensity (for KEPCO-generated power) = NOx emissions amount ÷ power generated amount (for KEPCO-generated power)

*6 NOx emissions intensity (by volume of power from thermal power generation (for KEPCO-generated power)) = NOx emissions amount ÷ volume of power from thermal power generation (for KEPCO-generated power)

*7 This is calculated from analyzed wastewater concentration values.

*8 Revegetation rate=(Business site revegetation area÷Business site total area) × 100

Promotion of environmental protection in local communities

Name of targeted	Emissions (t/year)							
chemical substance	FY2012	FY2013	FY2014	FY2015	FY2016			
2-aminoethanol	0	0	0	-	-			
Asbestos (specified)	0	0	0	0	0			
Ethylbenzene	6.1	6.0	6.2	12.0	11.0			
Ferric chloride	0	0	0	0	0			
Xylene	11	12	12	16	17			
HCFC-225	4.9	3.6	-	0	-			
Styrene	-	2.6	-	2.0	1.5			
Dioxins (specified)	0.041 (mg-TEQ/year)	0.13 (mg-TEQ/year)	0.28 (mg-TEQ/year)	0.54 (mg-TEQ/year)	0.66 (mg-TEQ/year)			
1,2,4-trimethylbenzene	-	-	-	0	0			
Toluene	16	14	12	11	7.2			
Hydrazine	<0.1	<0.1	<0.1	<0.1	<0.1			
n-Hexane	7.3	8.3	5.9	4.6	0.6			
Benzenes (specified)	3.0	3.3	2.4	1.9	0.8			
Boron compound	0	0	0	0	0			
PCB	-	-	-	-	-			
Methylnaphthalene	2.7	2.8	3.3	3.4	3.2			
Methylenebis (4,1-phenylene) diisocyanate	0	-	-	-	-			

Management of chemical substances (PRTR)

Name of targeted		Am	ount moved (t/ye	ear)	
chemical substance	FY2012	FY2013	FY2014	FY2015	FY2016
2-aminoethanol	3.7	5.6	8.9	-	-
Asbestos (specified)	15	2.7	5.1	3.4	1.3
Ethylbenzene	<0.1	0	0	0	0
Ferric chloride	0	0	3.0	0	0
Xylene	0.16	0	0	<0.1	0
HCFC-225	0	0	-	2.2	-
Styrene	-	0	-	0	0
Dioxins (specified)	0.0023 (mg-TEQ/year)	0.0016 (mg-TEQ/year)	0.0050 (mg-TEQ/year)	0.000079 (mg-TEQ/year)	0.04 (mg-TEQ/year)
1,2,4-trimethylbenzene	-	-	-	0	0
Toluene	<0.1	0	0	0	0
Hydrazine	<0.1	<0.1	3.1	3.0	0.9
n-Hexane	0	0	0	0	0
Benzenes (specified)	0	0	0	0	0
Boron compound	9.4	1.1	6.7	7.3	6.3
РСВ	-	-	-	-	-
Methylnaphthalene	<0.1	0	<0.1	0	0
Methylenebis (4,1-phenylene) diisocyanate	0	-	-	-	-

Notes:

• The chart show total values reported in compliance with the PRTR Law

• "0" indicates no emissions or transfers at targeted business site

• "<0.1" indicates less than 0.1 t/year emissions, etc.

• "-" indicates no business sites targeted for totalling

• Significant figures are displayed in two digits

Radioactive substances, radioactive waste

	Fiscal	year	2012	2013	2014	2015	2016	Unit	
	Evaluated dose values	Mihama Nuclear Power Station	< 0.001	N.D.	N.D.	N.D.	< 0.001		
	for the public in the vicinity of power plants	Takahama Nuclear Power Station	< 0.001	N.D.	< 0.001	< 0.001	N.D.	Millisieverts*1	
Gaseous	(inert gases)	Ohi Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.		
waste	Evaluated dose values	Mihama Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.		
	for the public in the vicinity of power plants	Takahama Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.	Millisieverts*1	
	(iodiné)	Ohi Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.		
l tau stal	Evaluated dose values	Mihama Nuclear Power Station	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
Liquid waste	for the public in the Takahama Nuclear Power Station		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	Millisieverts*1	
vic	vicinity of power plants	Ohi Nuclear Power Station	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
Radioacti	ive gaseous	Mihama Nuclear Power Station	5.4E7	N.D.	N.D.	N.D.	2.7E9		
waste dis	5	Takahama Nuclear Power Station	4.5E8	N.D.	2.3E8	2.5E8	N.D.	Becquerel* ²	
(inert gas	5)	Ohi Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.		
Radioacti	ive gaseous	Mihama Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.	Becquerel*2	
waste dis		Takahama Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.		
(iodine)		Ohi Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.		
Radioacti	ive liquid	Mihama Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.		
waste discharged (excluding tritium)		Takahama Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.		
		Ohi Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.		
Radioacti	ive solid nuclear waste	generated (200-L drums)*4	10,841	12,372	15,756	14,318	13,750		
Mihama	Nuclear Power Station		4,209	4,299	4,888	4,978	4,302	Equivalent in drums	
Takaham	a Nuclear Power Statio	n	4,062	3,649	6,368	4,471	5,002		
Ohi Nucle	ear Power Station		2,570	4,424	4,500	4,869	4,446		
Radioacti	ive solid nuclear waste	shrinkage (200-L drums)*⁵	12,675	13,972	18,082	20,298	16,348		
Mihama	Nuclear Power Station		4,750	4,085	5,710	6,583	4,514	Equivalent	
Takaham	a Nuclear Power Statio	n	4,736	4,893	6,152	7,402	6,984	in drums	
Ohi Nucle	ear Power Station		3,189	4,994	6,220	6,313	4,850		
		ste generated – amount of (200L-drum can equivalent)*6	-1,834	-1,600	-2,326	-5,980	-2,598		
Mihama	Nuclear Power Station		-541	214	-822	-1,605	-212	Equivalent in drums	
Takahama Nuclear Power Station			-674	-1,244	216	-2,931	-1,982	in arums	
Ohi Nuclear Power Station				-570	-1,720	-1,444	-404		
Radioactive solid nuclear waste cumulative amount stored (200-L drums)* ^{7,8}			108,662	107,061	104,735	98,756	96,159		
Mihama	Nuclear Power Station		28,100	28,313	27,491	25,887	25,675	Equivalent in drums	
Takaham	a Nuclear Power Statio	n	47,860	46,616	46,832	43,901	41,919	murums	
Ohi Nucle	ear Power Station		32,702	32,132	30,412	28,968	28,565		

*1 Millisieverts (effective dose): unit indicating the degree of radiation's effect on the human body

*2 Becquerel: Unit of radioactivity (one becquerel is defined as one nucleus decaying per second, representing the rate at which radioactive material emits radiation)

*3 Notes 4–7 are for the storage status at power plants (aggregation extent change from Environmental Report 2017)

*4 This is the amount of solid low-level radioactive waste produced in the fiscal year.

*5 This is the total of amount of solid waste with low-level radioactivity reduced through incineration, for example, and transported out of facilities in the fiscal year.

*6 This is the net increase of solid waste with low-level radioactivity calculated by deducting the amount reduced from the amount generated in the fiscal year.

*7 Cumulative amount of low-level solid radioactive waste

*8 Totals might not match due to rounding after conversion to drum can equivalent.

Data related to materiality

Note: Among data related to the environment, some environmental performance data related to materiality has received third-party assurance from Deloitte Tohmatsu Sustainability Co., Ltd. to guarantee their reliability. For details about this third-party assurance, see

http://www.kepco.co.jp/sustainability/kankyou/report/data/pdf/security.pdf [PDF 222.63KB]

Materiality	GRI disclosure	Effort	Indicator Objective		Results	
Materiality	item		mulcator	Objective	FY2015 🗷	FY2016
Emissions to atmosphere	305-4	Reduce carbon impact of electricity	CO2 emissions coefficient (end use) (after adjustment)	(Objective of the Electric Power Council for a Low Carbon Society) about 0.37 kg-CO2/kWh by fiscal 2030	0.496 kg-CO2/ kWh	0.493 kg-CO2/ kWh

ltem	Results				
i i i i i i i i i i i i i i i i i i i	FY2014	FY2015 🗹	FY2016		
Amount of CO2 emissions (before adjustment)*'	71,410,000 t-CO2	64,870,000 t-CO2	61,790,000 kg-CO2		
Amount of CO2 emissions (after adjustment)* ²	70,290,000 t-CO2	63,310,000 t-CO2	59,890,000 kg-CO2		
CO2 emissions coefficient (end use) (before adjustment)* ³	0.531 kg-CO2/kWh	0.509 kg-CO2/kWh	0.509 kg-CO2/kWh		
CO ₂ emissions coefficient (end use) (after adjustment)* ³	0.523 kg-CO2/kWh	0.496 kg-CO2/kWh	0.493 kg-CO2/kWh		

The CO₂ emissions amounts and emissions coefficients related to power sold were calculated based on the "GHG Emissions Accounting, Reporting and Disclosure System" of the "Act on Promotion of Global Warming Countermeasures."

- *1 The amount of CO₂ emissions is the amount produced from consumption of fuel used for power generation by thermal power plants and includes that for power purchased from other companies.
- *2 After adjustment figures include environmental value adjustments based on the purchasing systems for total amounts of renewable energy in the CO2 emissions amounts.
 - CO2 emissions amount (after adjustment) = CO2 emissions amount (before adjustment) + feed-in tariff adjustment CO2 emissions amount
- *3 The CO2 emissions coefficient (end use) shows the amount of CO2 emissions per kWh of Kansai Electric Power Company electricity used.
 - CO2 emissions coefficient (end use) (before adjustment) = amount of CO2 emissions (before adjustment) ÷ electricity sales volume
 - CO2 emissions coefficient (end use) (after adjustment) = amount of CO2 emissions (after adjustment) ÷ electricity sales volume

Items related to supply-chain emission amounts

GRI disclosure	ltem	Res	ults
item			FY2016 🗹
305-1	Direct greenhouse gas emission amounts (scope 1)**	41,800,000 t-CO2	3,9490,000 t-CO2
305-2	Indirect greenhouse gas emission amounts (scope 2)*5	10,000 t-CO2	10,000 t-CO2
305-3	Other indirect greenhouse gas emission amounts ^{*6} (related to scope 3, categories 4 and 5)	36,000 t-CO2	25,000 t-CO2

These are calculated based on the "GHG Emissions Accounting, Reporting and Disclosure System" in the "Act on Promotion of Global Warming Countermeasures" (hereafter "Warming Countermeasures Act") and the "Basic Guidelines on Accounting for Greenhouse Gas Emissions Throughout the Supply Chain" (Ministry of the Environment and Ministry of Economy, Trade and Industry).

The amount of supply chain emissions is the total amount of greenhouse gas emissions generated along with business activities throughout the supply chain of a business. It is comprised of direct emissions (scope 1), indirect emissions from energy sources (scope 2) and other indirect emissions (scope 3).

- *4 The direct greenhouse gas emission amounts (scope 1) are totals of direct greenhouse gas emissions (CO₂, SF₆ and N₂O from energy) reported (for the business) in accordance with the Warming Countermeasures Act and CO₂ emissions from vehicle fuel not included in this reporting.
- *5 The indirect greenhouse gas emission amounts (scope 2) are totals of CO2 emissions from electricity and heat purchased from others among those reported (for the business) in accordance with the Warming Countermeasures Act as indirect CO2 emissions.
- *6 For other indirect greenhouse gas emission amounts (scope 3, categories 4 and 5), contracted transportation amounts were extracted from the reporting (of the shippers) in accordance with the Warming Countermeasures Act. They were mainly calculated using the ton-kilometer method.

Materiality	GRI disclosure	Effort	Indicator Objective -	Indicator Objective Resul		ults
	item		objective	FY2015	FY2016 🗹	
Emissions to atmosphere	305-7	Prevent atmospheric pollution	SOx emissions intensity (thermal power)	Maintain the lowest levels in the world	0.055 g/kWh	0.043 g/kWh

ltem	Results			
i i i i i i i i i i i i i i i i i i i	FY2015	FY2016 🗹		
SOx emissions*7	4,735 t	3,635 t		
SOx emissions intensity (for KEPCO-generated power)**	0.046 g/kWh	0.037 g/kWh		
SOx emissions intensity (by volume of power from thermal power generation (for KEPCO-generated power))* ⁹	0.055 g/kWh	0.043 g/kWh		

*7 This is calculated from amounts of sulfur in fuel as well as SOx concentrations in gas emissions (measured values) and gas emission volumes.

*8 SOx emissions intensity (for KEPCO-generated power) = SOx emissions amount ÷ power generated amount (for KEPCO-generated power)

*9 SOx emissions intensity (by volume of power from thermal power generation (for KEPCO-generated power)) = SOx emissions amount ÷ volume of power from thermal power generation (for KEPCO-generated power)

Materiality	GRI disclosure	Effort	Indicator Objective	Objective	Res	ults
	item	LIIOIC		Objective	FY2015	FY2016 🗹
Emissions to atmosphere	305-7	Prevent atmospheric pollution	NOx emissions intensity (thermal power)	Maintain the lowest levels in the world	0.085 g/kWh	0.077 g/kWh

ltem	Results			
	FY2015	FY2016 🗹		
NOx emissions ^{*10}	7,397 t	6,528 t		
NOx emissions intensity (for KEPCO-generated power)*1	0.072 g/kWh	0.067 g/kWh		
NOx emissions intensity (by volume of power from thermal power generation (for KEPCO-generated power))*12	0.085 g/kWh	0.077 g/kWh		

*10 This is calculated from NOx concentrations in gas emissions (measured values) and gas emission volumes.

*11 NOx emissions intensity (for KEPCO-generated power) = NOx emissions amount ÷ power generated amount (for KEPCO-generated power)

*12 NOx emissions intensity (by volume of power from thermal power generation (for KEPCO-generated power)) = NOx emissions amount ÷ volume of power from thermal power generation (for KEPCO-generated power)

Materiality	GRI disclosure	Effort	Indicator Objective	Results		
	item		Objective	FY2015	FY2016 🗹	
Wastewater and waste matter	306-2	environmen-	Amount of high-concentration PCB processed*13	Process the entire amount within the legal time limit	4,763 units	4,834 units

*13 Processing results (cumulative total) for electrical equipment that contains PCBs (polychlorinated biphenyls), including high-voltage transformers and condensers, for processing subcontracted to the Japan Environmental Storage & Safety Corporation (JESCO)

Materiality	GRI disclosure			Indicator Objective	Res	ults
	item	indicator	FY2015		FY2016 🗹	
Wastewater and waste matter	306-2	Reduce environmen- tal impacts from waste	Amount of low-level radioactive waste produced ^{*16}	Steadily implement reduction measures	-6,021 units	-2,598 units

ltem	Results		
item	FY2015	FY2016 🗹	
Amount of solid radioactive waste generated (200 L-drum can equivalent)* ¹⁴	14,318 units	13,750 units	
Amount of solid radioactive waste reduced (200 L-drum can equivalent)* ¹⁵	20,339 units	16,348 units	
Amount of solid radioactive waste generated – amount of solid radioactive waste reduced (200 L-drum can equivalent) ^{*16}	-6,021 units	-2,598 units	

*14 This is the amount of solid low-level radioactive waste produced in the fiscal year.

*15 This is the total of amount of solid waste with low-level radioactivity reduced through incineration, for example, and transported out of facilities in the fiscal year.

*16 This is the net increase of solid waste with low-level radioactivity calculated by deducting the amount reduced from the amount generated in the fiscal year.