Environmental Data 2016

Environmental accounting (KEPCO)

KEPCO has introduced environmental accounting both on a non-consolidated basis and for group companies to clarify the costs of environmental conservation in our business activities and the benefits achieved.

FY2015 assessment

Environmental conservation costs

Investment in environmental conservation was about 15 billion yen, 4 billion lower than the previous year. Increased expenses for feed-in-tariff (FIT) purchases brought expenses to about 151 billion yen, 41 billion yen higher than the previous fiscal year.

Catanama	Invest	tment	Expe	enses	
Category	FY2014	FY2015	FY2014	FY2015	Major Items
1. Global environmental conservation costs (CO2 reductions, etc.)	10.4	13.3	888.2	1,311.9	Renewable energy power purchases, SF6 gas collection
2. Local environmental conservation costs	177.2	134.0	55.0	47.9	
(1) Measuring/monitoring environmental impact	9.9	0.9	13.1	9.6	Radiation control and measurement, air quality concentration measurement, marine area surveys
(2) Pollution control (air pollution, water contamination, oil leakage, etc.)	165.8	133.1	34.9	32.2	Air pollution control measures, water contamination prevention measures
(3) Nature conservation	1.5	0.0	7.0	6.2	Revegetation
3. Costs to build a circular economy	0.0	0.0	151.7	147.0	
⁽¹⁾ Industrial waste processing, recycling	0.0	0.0	76.4	71.5	Industrial waste processing, PCB processing
⁽²⁾ General waste processing, recycling	0.0	0.0	0.1	0.1	Paper recycling
(3) Radioactive waste processing	0.0	0.0	75.1	75.4	Low-level radioactive waste processing
(4) Green purchasing	0.0	0.0	0.0	0.0	Research-related work
4. Environmental management costs	0.0	0.0	1.5	1.2	Environmental reports
5. R&D costs	0.4	0.0	4.7	4.8	Load leveling, environmental conservation, energy savings and recycling, natural energy
6. Other costs	0.0	0.3	0.4	0.3	Research Laboratory repairs
Total	188.1	147.7	1,101.4	1,513.1	
Total capital investment during the period	3,000	2,541	-	-	

Environmental conservation costs (100 million yen)

Operating expenses during period	-	-	31,632	26,597	
----------------------------------	---	---	--------	--------	--

Note: Based on the Environmental Reporting Guidelines (FY2012 version) issued by the Ministry of the Environment. Depreciation is not calculated into expenses. Composite costs are tallied proportionally by one of three methods: (1) calculation of differences; (2) proportional division based on rational criteria; (3) proportional division based on criteria of expediency. Costs involved in generating nuclear power are calculated with the sum of individual measures to protect the environment taken as environmental conservation costs (radiation control and measurement, low-level radioactive waste processing, etc.). Figures may not add up due to rounding off.

Effects of environmental conservation

CO₂ emissions intensity decreased year-on-year due to a greater proportion of power generated from nuclear power and renewable energy sources.

SOx emissions intensity also decreased year-on-year in thermal power generation overall due to a decrease in generated power output from mono-fuel oil combustion units without desulfurization equipment.

Category	ltem (unit)		FY2014	FY2015	Year-on-year change			
	CO2 emissions (before carbon credits)	(10,000 t-CO2)	7,141	6,487	-654			
1. Global environmental	CO2 emissions intensity (before carbon credits)	(kg- CO2/kWh)	0.531	0.509	-0.022			
conservation	CO2 emissions (after carbon credits)	(10,000 t-CO2)	7,029	6,331	-698			
	CO2 emissions intensity (after carbon credits)	(kg- CO2/kWh)	0.523	0.496	-0.027			
	Air pollution control							
	SOx emissions	(t)	5,635	4,735	-900			
2. Local	SOx emissions intensity	(g/kWh)	0.059	0.055	-0.004			
environmental	NOx emissions	(t)	8,221	7,397	-824			
conservation	NOx emissions intensity	(g/kWh)	0.086	0.085	-0.001			
	Landscape integration							
	Revegetation area	(1,000 m ²)	3,542	3,505	-37			
	Industrial waste and other emissions	(1,000 t)	699	670	-29			
3. Building a circular economy	Recycling rate for industrial waste, etc.	(%)	99.8	99.9	0.1			
conomy	Low-level radioactive waste processing	(Rods)	-2,326	-6,021	-3,695			

Environmental conservation effects

Note:CO₂ emissions: CO₂ emissions from power purchased from other companies; SO_x and NO_x emissions: only KEPCO-generated power; CO₂ emissions coefficient: by amount of power sold; SO_x and NO_x emissions coefficient: only KEPCO-generated power

Economic benefits from environmental conservation measures

Economic benefits decreased approximately 200 million yen from the previous year due to a reduction in results from efforts that lead to cost savings.

	Category	FY2014	FY2015	Major Items
Revenue	Operating revenues from recycling, etc.	16.6	17.2	Gain on sale of disused articles (recycling)
	Other	0	0	
Cost savings	Cost savings from reuse and recycling, etc.	3.1	0.1	Cost savings from the purchase of recycled items
	Total	19.7	17.3	

Economic benefits from environmental conservation measures (100 million yen)

Environmental efficiency

Environmental efficiency (with FY1990 as the base year) is calculated to indicate the relationship between environmental load and economic value.

KEPCO's environmental efficiency for FY2015 shows figures of 115 (electric power sold/composite index) and 69 (electric power sold/CO₂ emissions), six points and two points higher respectively than in the previous year. The primary factors for this were reductions in CO₂, SO_x and NO_x emissions intensities and a decrease in fuel consumption.

Environmental efficiency graph

* Composite index = CO₂, SOx and NOx emissions, landfill disposal of industrial waste + Oil, coal, LNG

Note: For calculations since FY2007, LIME2 integration coefficients developed by the Research Center for Life Cycle Assessment were used.

Environmental accounting (group companies)

Environmental accounting in group companies

Environmental accounting figures are totaled for group companies represented on the Group Environmental Management Committee in FY2015, composed of 19 companies.

Environmental conservation costs (million yen)

Category	Major Items	Invest	tment	Expenses		
Category		FY2014	FY2015	FY2014	FY2015	
Costs for management activities	Environmental conservation at business sites and surroundings	0.4	0.1	177	183	
Costs for pollution control	Measures to prevent air pollution and water contamination	25	23	45	44	
Costs for resource recycling	General and industrial waste processing and recycling	0.0	0.0	846	974	
Costs for community activities	External environmental conservation activities, etc.	0.0	0.0	0.7	11	
Other costs	R&D, etc.	0.0	0.0	14	11	
	Total	26	23	1,083	1,224	

Environmental conservation effects (physical effects)

Category	ltems (unit)	FY2014	FY2015
Environmental management	ISO or other external certifications (locations)*	46	45
	CO2 emissions (10,000 t-CO2)	15	15
Global and local environmental	SOx emissions (t)	1	3
conservation	NOx emissions (t)	10	11
	Revegetation area (1,000 m ²)*	3,411	3,411
Building a circular economy	Industrial waste emissions (1,000 t)	96	122

* Cumulative to end of fiscal year

Economic benefits from environmental conservation effects (million yen)

	Category	FY2014	FY2015			
Revenue	Business revenue from recycling, etc.	1,114	1,225			
Cost savings	Cost savings Cost savings from re-use and recycling, etc.					
	Total	1,114	1,225			

Environment-related data

Global environmental conservation

	Fisca	l year	2010	2011	2012	2013	2014	2015	Unit
CO ₂ emission	ns (before ca	rbon credits, etc.)*1	4,703	6,569	7,280	7,325	7,141	6,487	10,000 t-CO2
		on credits, etc.)*1	4,250	6,044	6,731	7,251	7,029	6,331	10,000 t-CO2
	ns coefficient	(before carbon credits, etc.)	0.311	0.450	0.514	0.522	0.531	0.509	kg- CO2/kWh
CO2 emissior (by amount c		t (after carbon credits, etc.) wer sold)* ²	0.281	0.414	0.475	0.516	0.523	0.496	kg- CO2/kWh
	Global CO2	emissions ^{*3}	305	313	315	322	-	-	100 million t-CO2
	Japan's CO	2 emissions*4	12.12	12.62	12.96	13.12	12.65	-	100 million t-CO2
		CO2 emissions (before carbon credits, etc.)	3.74	4.39	4.86	4.84	4.57	-	100 million
D.(CO2 emissions (after carbon credits, etc.)	3.17	4.09	4.15	4.84	4.56	-	t-CO2
Reference	Electric power industry* ^s	CO2 emissions coefficient (before carbon credits, etc.) (by amount of electric power sold)	0.413	0.510	0.571	0.570	0.556	-	kg-
		CO2 emissions coefficient (after carbon credits, etc.) (by amount of electric power sold)	0.350	0.476	0.487	0.570	0.554	-	CO2/kWh
Greenhouse	gases	N2O (dinitrogen oxide)*6	2.0	2.4	2.8	2.6	2.9	2.7	10,000 t-CO2
other than C	0 ₂	SF6 (sulfur hexafluoride)*6	5.5	5.3	5.3	4.9	5.0	4.4	10,000 t-CO2
Utilization ra	te of nuclea	r power facilities*7	78.2	37.6	17.7	10.9	0.0	1.0	%
	,	thermal power facilities*8	44.6	44.2	44.2	44.6	46.5	46.6	%
Total energy	use*9					765,923,443			GJ
		Coal	3,669	3,724	4,237	3,890	4,034	3,871	1,000 t
		Heavy oil	165	197	178	289	332	193	1,000 kL
Thermal fuel		Crude oil	1,160		5,375	6,044	4,240	3,366	1,000 kL
consumptior	ı	LNG Wood pellets	4,737 27	6,571 20	7,377	7,729	8,824	8,319	1,000 t 1,000 kL (equivalent in heavy oil)
Fuel for nucle (weight of pr			215	74	-	-	-	61	tU
Refurbishme (Cumulative		lectric plant since FY1989)	-	50,652	-	-	-	-	kW
Power distrib	oution loss ra	ate ^{*10}	5.2	5.0	5.9	5.1	5.4	5.2	%
SF ₆ gas emis	sions								
 Upon inst 			0.4	0.4	0.3	0.2	0.1	0.1	t
 Upon re 			0.1	0.2	0	0	0	0	t
SF6 gas colle									
Upon ins	•		98.8	99.2	99.2	99.1	98.8	99.1	%
• Upon red State of devel of new energy (Cumulative b	opment and y sources	introduction end at KEPCO facilities)*11	99.2 7,335.4	99.1 11,038.40	99.4 10,849.00	99.4 11,357.00	99.5 11,815.00	99.1 11,000.00	%
• Solar po	wer generat	ion	7,181	10,884	10,696	11,204	11,662	11,000	kW
	wer generat		153.4	153.4	153.0	153.0	153.0	0	
•Fuel cell			1	1	1	0	0	0	
		Office electricity use*12	107	91	83	85	79	78	GWh
		Everyday water use*12	587	554	538	473	461	424	1,000 m ³
Energy and	0.00	Vehicle fuel costs	9.84	9.86	10.35	10.44	10.73	10.13	km/L
resource savin (Office division	5	Vehicle fuel use (gasoline)	3.2	3.0	2.8	2.7	2.6	2.5	1,000 kL
(011100 0111510	,	Vehicle fuel use (diesel)	0.7	0.6	0.5	0.5	0.5	0.7	1,000 kL
		Copier paper use	1,082	1,111	995	873	839	908	t
Low-pollutio	n vehicle int	roduction rate*13	82.9	86.0	87.2	87.5	86.1	86.2	%
CO ₂ emission	IS	Office electricity	3.0	3.8	3.9	4.4	4.2	3.9	10,000 t-CO2
from office activities* ¹⁴		Everyday water	0.01	0.01	0.01	0.01	0.01	0.01	10,000 t-CO2
activities		Vehicle fuel	0.9	0.9	0.7	0.7	0.7	0.8	10,000 t-CO2

Environmental Data 2016

- *1 CO2 emissions: Calculated on the basis of coefficients by type of fuel for amount of thermal fuel consumed; includes power purchased from other companies
- *2 CO2 emissions coefficient (by amount of power sold) = (CO2 emissions from power generation carbon credits) ÷ amount of power sold
- *3 Global CO2 emissions: IEA "CO2 Emissions From Fuel Combustion" 2015 Edition
- *4 Japan's CO2 emissions: Source: Greenhouse Gas Inventory Office of Japan (Center for Global Environmental Research, National Institute for Environmental Studies)
- *5 CO2 emissions, CO2 emissions coefficient in the electric power industry: Environmental Action Plan in the Electric Power Industry (Federation of Electric Power Companies of Japan)
- *6 Published in FY2010 results; figures are CO2 equivalents
- *7 Utilization rate of nuclear power facilities = amount of power generated ÷ (permitted output × calendar hours) × 100
- *8 Net thermal efficiency of thermal power facilities = (amount of power transmitted × quantity of heat per kWh) ÷ total amount of input heat (lowest heat value standard) × 100
- *9 Figures reported to the government based on the Act on the Rational Use of Energy. (Fossil fuel used, purchased electricity, purchased heat)
- *10 Power distribution loss rate = $[1 {(amount of power sold + amount of power at transformer substation)$ $<math>\div$ (generated and purchased electric power – amount of power at KEPCO power plants)}] \times 100
- *11 Actual figures for FY2014 include equipment used by the company.
- *12 The scope for calculation of office electricity use and everyday water use has been revised
- *13 Rate of introduction of low-pollution vehicles = No. of low-pollution vehicles purchased \div Total no. of vehicles \times 100
- *14 CO2 emissions from office activities = amount of electricity used × CO2 emissions coefficient after carbon credits, etc. CO2 emissions from everyday water use = amount of everyday water used × emissions coefficient CO2 emissions from vehicle use = amount of vehicle fuel used × coefficient by type of fuel

Source: Ministry of the Environment, Summary of Energy & Economic Statistics

Local environmental conservation

	Fiscal year	2010	2011	2012	2013	2014	2015	Unit
SOx emissions (fro	m KEPCO power plants)*1	2,224	5,180	6,230	7,089	5,635	4,735	t
SOx emissions	For KEPCO-generated power*2	0.017	0.042	0.054	0.062	0.052	0.046	~ /l/\//b
intensity	For KEPCO-generated thermal power*3	0.045	0.069	0.072	0.077	0.059	0.055	g/kWh
NOx emissions (from KEPCO power plants)*4			7,445	9,448	10,013	8,221	7,397	t
NOx emissions	For KEPCO-generated power*5	0.041	0.061	0.082	0.087	0.076	0.072	g/kWh
intensity	For KEPCO-generated thermal power*6	0.108	0.099	0.109	0.108	0.086	0.085	g/күүп
Amount of limestone used			77	92	87	79	74	1,000 t
Amount of ammonia used			12	13	14	15	14	1,000 t
COD emissions*7			35	23	27	18	21	t
Amount of industrial water used (for power generation)			446	467	446	431	453	10,000 m ³
Amount of service	water used (for power generation)	105	197	203	222	205	197	10,000 m ³
River water, groun	dwater	86	55	40	42	40	36	10,000 m ³
Seawater (desalina	ited)	329	266	282	263	245	255	10,000 m ³
Revegetation	Thermal power plants	37	37	37	37	38	37	
rate*8	Nuclear power plants	79	78	77	75	74	73	%
(end of fiscal year)	Electric power offices (substations)	28	28	28	28	28	28	
Rate of conversion to underground transmission lines (end of fiscal year)		19.4	19.5	19.5	19.5	17.1	17.3	%
Rate of conversion (end of fiscal year)	to underground distribution lines	9.9	10	10	10.1	10.1	10.2	%

*1 SOx emissions: Calculated from amount of sulfur in fuel and removals by desulfurization equipment

- *2 SOx emissions intensity (for KEPCO-generated power) = SOx emissions (KEPCO power stations) ÷ KEPCO-generated power
- *3 SOx emissions intensity (for KEPCO-generated thermal power) = SOx emissions (KEPCO power stations) ÷ KEPCO-generated thermal power
- *4 NOx emissions: gauge-measured values
- *5 NOx emissions intensity (for KEPCO-generated power)=NOx emissions (KEPCO power stations) ÷ KEPCO-generated power
- *6 NOx emissions intensity (for KEPCO-generated thermal power)=NOx emissions (KEPCO power stations) ÷ KEPCO-generated thermal power
- *7 COD emissions: calculated from values measured by analysis of concentration in wastewater
- *8 Revegetation rate = (Business site revegetation area ÷ Business site total area) × 100

Industrial waste, resource recycling

Fisc	al year	2010	2011	2012	2013	2014	2015	Unit
Amount of Industrial Waste ar	nd Other Emissions	665.8	713.8	790.9	747.1	698.6	670.2	
 Soot particles (Heavy/cru 	de oil ash, coal ash, etc.)	449.0	465.6	509.7	477.1	474.3	443.8	
 Sludge (Desulfogypsum, wasteway) 	 Sludge (Desulfogypsum, wastewater processing sludge, etc.) 			172.6	156.9	143.2	141.9	
 Cinders 		27.1	25.0	33.9	29.7	27.4	28.8	
 Demolition debris (Waste concrete utility po 	les, etc.)	18.5	18.8	18.1	19.3	21.0	23.8	1,000 t
 Metal scraps 		33.5	38.3	27.1	42.4	21.7	20.6	
 Glass/ceramic scraps (Thermal insulation scraps) 	s, insulator scraps, etc.)	3.0	3.1	2.6	2.7	2.5	2.2	
•Waste oil		8.9	9.5	8.5	3.4	2.4	2.2	
Waste plastic		1.4	1.4	1.3	1.2	1.0	0.8	
●Other		4.1	10.8	17.0	14.5	5.1	6.0	
Amount of industrial waste for landfill disposal			1.4	0.9	1.3	1.2	0.9	
 Glass/ceramic scraps (Thermal insulation scraps) 	s, insulator scraps, etc.)	0.15	0.16	0.08	0.11	0.12	0.1	
 Sludge (Wastewater proc 	essing sludge, etc.)	1.27	0.6	0.55	0.73	0.74	0.47	
 Demolition debris 		0.42	0.22	0.04	0.09	0.11	0.03	1,000 t
 Cinders 		0.1	0.01	0.0	0.0	0.0	0.0	
 Waste plastic 		0.16	0.16	0.07	0.23	0.07	0.09	
 Metal scraps 		0.04	0.09	0.06	0.10	0.05	0.1	
●Other		0.03	0.11	0.07	0.06	0.13	0.14	
Industrial waste recycling rate	Industrial waste recycling rate ^{*1}		99.8	99.9	99.8	99.8	99.9	%
Low-concentration PCB industrial waste	Insulating oil	6.2	7.1	7.7	7.7	7.7	7.7	10,000 kL
Amount processed ^{*2} (utility pole transformers)	Transformer cases	14.8	16.6	18.6	20.6	22.7	Approx. 24 (after processing)	10,000 units
Green procurement rate for o	fice supplies* ³	97	98	98	80	82	80	%

*1 Industrial waste recycling rate = [(Industrial waste and other emissions - Amount of landfill disposal) ÷ (Industrial waste and other emissions)] ×100

*2 Values are cumulative values from past fiscal years.

*3 Green procurement rate for office supplies = (Price for green procurement of office supplies (43 applicable categories) ÷ total price for purchasing office supplies (43 applicable categories)) ×100

Management of chemical substances (PRTR)

Name of targeted	Emissions (t/year)									
chemical substance	FY2010	FY2011	FY2012	FY2013	FY2014	FY2015				
2-aminoethanol	0	0	0	0	0	-				
Asbestos (specified)	0	0	0	0	0	0				
Ethylbenzene	13	15	6.1	6.0	6.2	12.0				
Ferric chloride	0	0	0	0	0	0				
Xylene	31	31	11	12	12	16				
HCFC-225	14	3.0	4.9	3.6	-	0				
Styrene	-	-	-	2.6	-	2				
Dioxins (specified)	0.13 (mg-TEQ/ year)	0.13 (mg-TEQ/ year)	0.041 (mg-TEQ/ year)	0.13 (mg-TEQ/ year)	0.28 (mg-TEQ/ year)	0.54 (mg-TEQ/ year)				
1,2,4-trimethylbenzene	-	1.1	-	-	-	0				
Toluene	9.5	8.2	16	14	12	11				
Hydrazine	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
n-Hexane	-	-	7.3	8.3	5.9	4.6				
Benzenes (specified)	-	<0.1	3	3.3	2.4	1.9				
Boron compound	0	<0.1	0	0	0	0				
РСВ	-	0	-	-	-	-				
Methylnaphthalene	1.6	1.2	2.7	2.8	3.3	3.4				
Methylenebis (4,1-phenylene) diisocyanate	-	-	0	-	-	-				

Name of targeted			Amount mo	ved (t/year)		
chemical substance	FY2010	FY2011	FY2012	FY2013	FY2014	FY2015
2-aminoethanol	12	4.5	3.7	5.6	8.9	-
Asbestos (specified)	11	16	15	2.7	5.1	3.4
Ethylbenzene	0	<0.1	<0.1	0	0	0
Ferric chloride	0	0	0	0	3.0	0
Xylene	0	0.22	0.16	0	0	<0.1
HCFC-225	0	0	0	0	-	2.2
Styrene	-	-	-	0	-	0
Dioxins (specified)	7.0 (mg-TEQ/ year)	0.0066 (mg-TEQ/ year)	0.0023 (mg-TEQ/ year)	0.0016 (mg-TEQ/ year)	0.0050 (mg-TEQ/ year)	0.000079 (mg-TEQ/ year)
1,2,4-trimethylbenzene	-	0	-	-	-	0
Toluene	0	0.44	<0.1	0	0	0
Hydrazine	0.41	8.1	<0.1	<0.1	3.1	3
n-Hexane	-	-	0	0	0	0
Benzenes (specified)	-	0	0	0	0	0
Boron compound	0	4.6	9.4	1.1	6.7	7.3
РСВ	-	0.87	-	-	-	-
Methylnaphthalene	0	0	<0.1	0	<0.1	0
Methylenebis (4,1-phenylene) diisocyanate	-	-	0	-	-	-

Notes:

• The chart show total values reported in compliance with the PRTR Law

• "0" indicates no emissions or transfers at targeted business site

• "<0.1" indicates less than 0.1 t/year emissions, etc.

• "-" indicates no business sites targeted for totalling

• Significant figures are displayed in two digits

Radioactive substances, radioactive waste

	Fiscal year	2011	2012	2013	2014	2015	Unit
Evaluated dose values for the public in the vicinity of power plants	Mihama Nuclear Power Station	<0.001	< 0.001	N.D.	N.D.	N.D.	Millisieverts*1
	Takahama Nuclear Power Station	< 0.001	< 0.001	N.D.	< 0.001	< 0.001	
	Ohi Nuclear Power Station	< 0.001	N.D.	N.D.	N.D.	N.D.	
Radioactive gaseous waste discharged (inert gas)	Mihama Nuclear Power Station	3.4E9	5.4E7	N.D.	N.D.	N.D.	Becquerel* ²
	Takahama Nuclear Power Station	1.7E9	4.5E8	N.D.	2.3E8	2.5E8	
	Ohi Nuclear Power Station	6.8E10	N.D.	N.D.	N.D.	N.D.	
Radioactive gaseous waste discharged (iodine)	Mihama Nuclear Power Station	1.2E6	N.D.	N.D.	N.D.	N.D.	Becquerel* ²
	Takahama Nuclear Power Station	1.4E6	N.D.	N.D.	N.D.	N.D.	
	Ohi Nuclear Power Station	2.2E6	N.D.	N.D.	N.D.	N.D.	
Radioactive gaseous waste discharged (excluding tritium)	Mihama Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.	Becquerel* ²
	Takahama Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.	
	Ohi Nuclear Power Station	N.D.	N.D.	N.D.	N.D.	N.D.	
Radioactive solid nuclear waste generated (200-L drums)*3		10,132	8,437	10,936	12,472	11,466	Equivalent in drums
Mihama Nuclear Power Station		3,963	4,209	4,229	4,888	4,978	
Takahama Nuclear Power Station		2,440	1,658	2,213	3,084	1,619	
Ohi Nuclear Power Station		3,729	2,570	4,424	4,500	4,869	
Radioactive solid nuclear waste shrinkage (200-L drums)*3		10,485	10,675	12,476	15,082	17,339	Equivalent in drums
Mihama Nuclear Power Station		4,219	4,750	4,085	5,710	6,583	
Takahama Nuclear Power Station		2,817	2,736	3,397	3,152	4,443	
Ohi Nuclear Power Station		3,449	3,189	4,994	6,220	6,313	
Radioactive solid nuclear waste cumulative amount stored (200-L drums)* ³		108,223	105,986	104,445	101,835	95,963	Equivalent in drums
Mihama Nuclear Power Station		28,640	28,100	28,313	27,491	25,887	
Takahama Nuclear Power Station		46,262	45,184	44,000	43,932	41,108	
Ohi Nuclear Power Station		33,321	32,702	32,132	30,412	28,968	

*1 Millisieverts (effective dose): unit indicating the degree of radiation's effect on the human body

*2 Becquerel: Unit of radioactivity (one becquerel is defined as one nucleus decaying per second, representing the rate at which radioactive material emits radiation)

*3 Storage conditions at solid nuclear waste repositories