Environmental Data 2015

Environmental accounting (KEPCO)

KEPCO has introduced environmental accounting both on a non-consolidated basis and for group companies to clarify the costs of environmental conservation in our business activities and the benefits achieved.

FY2014 assessment

Environmental conservation costs

Investment in environmental conservation was about 27 billion yen, 4 billion higher than the previous year. Increased expenses for power purchases from renewable energy sources brought expenses to about 174 billion yen, 3 billion yen higher than the previous fiscal year.

Ostanaur	Invest	tment	Expe	nses	Malaylkawa
Category	FY2013	FY2014	FY2013	FY2014	Major items
1. Global environmental conservation costs (CO2 reductions, etc.)	9.9	10.4	534.4	889.0	Renewable energy power purchases, CO2 emissions trading, SF6 gas collection
2. Local environmental conservation costs	223.7	263.0	954.9	651.2	
(1) Measuring/monitoring environmental impact	0.7	9.9	9.0	13.2	Radiation control and measurement, air quality concentration measurement, marine area surveys
(2) Pollution control (air pollution, water contamination, oil leakage, etc.)	130.0	157.2	923.7	602.3	Air pollution control measures, water contamination prevention measures
(3) Nature conservation/ Landscape harmonizing	93.2	95.8	22.2	35.8	Conversion to underground distribution lines, revegetation
3. Costs to build a circular economy	0.1	0.0	175.3	156.2	
(1) Industrial waste processing, recycling	0.0	0.0	123.1	80.9	Industrial waste processing, PCB processing
(2) General waste processing, recycling	0.0	0.0	0.1	0.1	Paper recycling
(3) Radioactive waste processing	0.0	0.0	52.1	75.1	Low-level radioactive waste processing
(4) Green purchasing	0.1	0.0	0.0	0.0	Low-pollution vehicle leasing
4. Environmental management costs	0.0	0.0	32.3	28.5	Environmental reports
5. R&D costs	0.0	0.4	5.7	4.9	High-efficiency power generation, load leveling, energy reutilization
6. Other costs	0.0	0.0	8.1	8.1	
(1) Environment-related compensations/ contributions	0.0	0.0	7.8	7.5	Pollution load levies
Total	233.7	273.9	1,710.7	1,739.6	

Environmental conservation costs (100 million yen)

Total capital investment during the period	3,250	3,000	-	-	
Operating expenses during period	-	-	30,750	31,632	

Note: Based on the Environmental Reporting Guidelines (FY2012 version) issued by the Ministry of the Environment. Depreciation is not calculated into expenses. Composite costs are tallied proportionally by one of three methods: (1) calculation of differences; (2) proportional division based on rational criteria; (3) proportional division based on criteria of expediency. Costs involved in generating nuclear power are calculated with the sum of individual measures to protect the environment taken as environmental conservation costs (radiation control and measurement, low-level radioactive waste processing, etc.). Figures may not add up due to rounding off.

Effects of environmental conservation

The increase in LNG used as a fuel in power generation and decrease in petroleum has led to a year-on-year decrease in levels of CO₂, SO_x, and NO_x emissions.

Category	Item (unit)		FY2013	FY2014	Year-on-year change
	CO2 emissions (before carbon credits)	(10,000 t-CO2)	7,325	7,141	-185
	CO2 emissions intensity (kg- (before carbon credits) CO2/kWh)		0.522	0.531	0.009
1. Global environmental conservation	CO2 emissions (after carbon credits)	ssions (10,000 bon credits) t-CO2)		7,029	-222
	CO2 emissions intensity (after carbon credits)	(kg- CO2/kWh)	0.516	0.523	0.007
	Introduction of low-pollution vehicles	(Units)	4,021	3,943	-78
	Air pollution control				
	SOx emissions	(t)	7,089	5,635	-1,454
	SOx emissions intensity	(g/kWh)	0.077	0.059	-0.018
2. Local	NOx emissions	(t)	10,013	8,221	-1,792
environmental	NOx emissions intensity	(g/kWh)	0.108	0.086	-0.022
conservation	Landscape integration				
	Extension of underground power lines	(km)	139	112	-27
	Revegetation area	(1,000 m ²)	3,501	3,542	41
	Industrial waste and other emissions	(1,000 t)	747	699	-48
3. Building a circular	Recycling rate for industrial waste, etc.	(%)	99.8	99.8	0
economy	Low-level radioactive waste processing	(Rods)	-1,600	-2,326	-726
4. Other	Tree Planting	(1,000 rods)	0.2	1.2	1.0
	Beautification	(Cases)	448	184	-264

Environmental conservation effects

Note: CO2 emissions: CO2 emissions from power purchased from other companies; SOx and NOx emissions: only KEPCO-generated power; CO2 emissions coefficient: by amount of power sold; SOx and NOx emissions coefficient: only KEPCO-generated power

Economic benefits from environmental conservation measures

Thermal efficiency improvements at thermal power stations have resulted in a reduction in the amount of fuel used to generate power, creating a 52 billion yen economic benefit over the previous fiscal year.

	Category	FY2013	FY2014	Major Items
Revenue	Operating revenues from recycling, etc.	15.6	16.6	Gain on sale of disused articles (recycling)
	Other	0	0	
	Cost savings from energy savings	1,348.4	1,880.6	Savings in fuel expenses due to thermal efficiency improvements in thermal power generation*
Cost savings	Cost savings from reuse and recycling, etc.	35.7	22.4	Cost savings from appropriated use of decommissioned aging thermal power equipment Savings in new equipment purchase costs and disposal costs through the reuse of materials and equipment
	Other	0.4	0.3	
Total		1,400.1	1,919.9	

Economic benefits from environmental conservation measures (100 million yen)

Note: Savings on fuel costs for the relevant fiscal year are calculated on the basis of thermal efficiency improvements made in comparison to FY1990.

Environmental efficiency

Environmental efficiency (with FY1990 as the base year) is calculated to indicate the relationship between environmental load and economic value. KEPCO's environmental efficiency for FY2014 shows figures of 109 (electric power sold/composite index) and 67 (electric power sold/CO₂ emissions), one point higher and one point lower respectively than in the previous year. The primary factors for this are reductions in both SOx and NOx emissions and a decrease in electric power sold.

Environmental efficiency graph

Composite index =	CO2. SOx and NOx emissions. landfill disposal of industrial waste	+	Oil. coal. LNG
			- , , -

Note: For calculations since FY2007, LIME2 integration coefficients developed by the Research Center for Life Cycle Assessment were used.

Environmental accounting (group companies)

Environmental accounting in group companies

Environmental accounting figures are totaled for group companies represented on the Group Environmental Management Committee, composed of 46 companies (no change year on year).

Environmental conservation costs (million yen)

Category	Major Items	Inves	tment	Expenses		
Category		FY2013	FY2014	FY2013	FY2014	
Costs for management activities	Environmental conservation at business sites and surroundings	0.0	0.4	703	733	
Costs for pollution control	Measures to prevent air pollution and water contamination	12	25	40	46	
Costs for resource recycling	General and industrial waste processing and recycling	0.0	0.0	1,291	1,283	
Costs for community activities	Donations and support to environmental conservation organizations	1	0.0	2	2	
Other costs	R&D, pollution load levies, etc.	24	15	15	14	
	Total	37	41	2,051	2,078	

Environmental Conservation Effects (physical effects)

Category	Items (unit)	FY2013	FY2014
Environmental management	ISO or other external certifications (locations)*	44	45
	CO2 emissions (10,000 t-CO2)	12	13
	SOx emissions (t)	1	1
Global and local environmental	NOx emissions (t)	9	10
conservation	Revegetation area (1,000 m ²)*	3,433	3,411
	Introduction of low-pollution vehicles (no. of vehicles)*	2,552	3,279
Building a circular economy	Industrial waste emissions (1,000 t)	111	81
Other	Beautification activities (cases)	283	337

* Cumulative to end of fiscal year

Economic benefits from environmental conservation effects (million yen)

	Category	FY2013	FY2014
Devenue	Business revenue from recycling, etc.	1,168	1,114
Revenue	Sales of eco-products	1,476	1,355
Cost savings	Cost savings from energy savings	0.2	0.3
	Total	2,645	2,469

Environment-related data

Global environmental conservation

Fiscal year			2009	2010	2011	2012	2013	2014	Unit
CO ₂ emissio	ons (before carbo	n credits)*1	4,161	4,703	6,569	7,280	7,325	7,141	10,000 t-CO2
CO2 emissions (after carbon credits)				4,250	6,044	6,731	7,251	7,029	10,000 t-CO2
CO ₂ emissions coefficient (before carbon credits)* ¹ (by amount of electric power sold)* ²			0,294	0.311	0.450	0.514	0.522	0.531	kg- CO2/kWh
CO2 emissio (by amount	ons coefficient (aff of electric power s	ter carbon credits) sold)*²	0.265	0.281	0.414	0.475	0.516	0.523	kg- CO2/kWh
Global CO2 emissions* ³			290	305	313	317	-	-	100 million t-CO2
	Japan's CO2 em (published Apr. 2	iissions*⁴ 23, 2015)	11.61	12.12	12.61	12.96	13.11	-	100 million t-CO2
		CO2 emissions (before carbon credits)	3.53	3.74	4.39	4.86	4.84	-	100 million t-CO2
Reference		CO ₂ emissions (after carbon credits)	3.01	3.17	4.09	4.15	4.84	-	
Thereference	Electric power industry*5	CO2 emissions coefficient (before carbon credits) (by amount of electric power sold)	0.412	0.413	0.510	0.571	0.570	-	kg-
		CO2 emissions coefficient (after carbon credits) (by amount of electric power sold)	0.351	0.350	0.476	0.487	0.570	-	CO2/kWh
Greenhouse	gases other	N2O (dinitrogen oxide)*6	-	2.0	2.4	2.8	2.6	2.9	10,000 t-CO2
than CO2		SF6 (sulfur hexafluoride)*6	-	5.5	5.3	5.3	4.9	5.7	10,000 t-CO2
Utilization ra	ate of nuclear pow	er facilities*7	77.0	78.2	37.6	17.7	10.9	0.0	%
Net thermal	efficiency of therr	nal power facilities*8	44.1	44.6	44.2	44.2	44.6	46.5	%
		Coal	1,419	3,669	3,724	4,237	3,890	4,034	1,000 t
		Heavy oil	121	165	197	178	289	332	1,000 kL
-		Crude oil	1,313	1,160	4,285	5,375	6,044	4,240	1,000 kL
I nermal fue	I consumption	LNG	4,981	4,737	6,571	7,377	7,729	8,824	1,000 t
		Wood pellets	21	27	20	19	19	17	1,000 kL (equivalent in heavy oil)
Fuel for nuc (weight of pr	lear power genera re-irradiated urani	ation um)	184	215	74	-	-	-	tU
Refurbishme (Cumulative	ent of hydroelectri total output since	c plant 9 FY1989)	-	-	50,652	-	-	-	kW
Power distri	bution loss rate*9		5.4	5.2	5.0	5.9	5.1	5.4	%
SF6 gas em	issions								
Upon in	spection		0.6	0.4	0.4	0.3	0.2	0.1	t
•Upon re	emoval		0.1	0.1	0.2	0	0	0	t
SF6 gas coll			00	00.0	00.0	00.0	00.1	00.0	0/
• Upon re	moval		00 /	90.0	99.2	99.2 00 /	99.1	90.0	70 0/_
State of deve (Cumulative	elopment and intro by fiscal year end	duction of new energy sources	1,134.4	7,335.4	11,038.4	10,849.0	11,357.0	11,815.0	/0
Solar power generation			981	7,181	10,884	10,696	11,204	11,662	kW
Wind power generation			152.4	153.4	153.4	153.0	153.0	153.0	
• Fuel cell batteries			1	1	1	1	0	0	
		Office electricity use*10	106	107	91	83	85	79	Million kWh
Energy and	resource savings	Everyday water use*10	594	587	554	538	473	461	1,000 m ³
(Office divisi	ion)	Vehicle fuel use	9.47	9.84	9.86	10.35	10.44	10.73	km/L
		Copier paper use	1,064	1,082	1,111	995	873	839	t
Low-pollutio	n vehicle introduc	tion rate*11	79.1	82.9	86.0	87.2	87.5	86.1	%
CO ₂ emissio	ons	Office electricity	2.7	3.0	3.8	3.9	4.4	4.2	10,000 t-CO2
from office a	ctivities*12	Everyday water	0.02	0.02	0.02	0.01	0.01	0.02	10,000 t-CO2
		venicie tuel	I 1	0.9	0.9	0.7	0.7	0.7	10,000 t-CO2

- *1 CO₂ emissions: Calculated on the basis of coefficients by type of fuel for amount of thermal fuel consumed; includes power purchased from other companies
- *2 CO₂ emissions coefficient (by amount of power sold) = (CO₂ emissions from power generation carbon credits) ÷ amount of power sold
- *3 Global CO2 emissions: IEA "CO2 Emissions From Fuel Combustion" 2014 Edition
- *4 Japan's CO₂ emissions: Source: Greenhouse Gas Inventory Office of Japan (Center for Global Environmental Research, National Institute for Environmental Studies)
- *5 CO₂ emissions, CO₂ emissions coefficient in the electric power industry: Environmental Action Plan in the Electric Power Industry (Federation of Electric Power Companies of Japan)
- *6 Published in FY2010 results; figures are CO2 equivalents
- *7 Utilization rate of nuclear power facilities = amount of power generated ÷ (permitted output × calendar hours) × 100
- *8 Net thermal efficiency of thermal power facilities = (amount of power transmitted×quantity of heat per kWh) ÷ total amount of input heat (lowest heat value standard)×100
- *9 Power distribution loss rate = [1 {(amount of power sold + amount of power at transformer substation) ÷(generated and purchased electric power - amount of power at KEPCO power plants)}]×100
- *10 The scope for calculation of office electricity use and everyday water use has been revised
- *11 Rate of introduction of low-pollution vehicles = No. of low-pollution vehicles purchased (Euro VI standard) ÷Total no. of vehicles ×100
- *12 CO₂ emissions from office activities = amount of electricity used × CO₂ emissions coefficient after carbon credits CO₂ emissions from everyday water use = amount of everyday water used × emissions coefficient CO₂ emissions from vehicle use = amount of vehicle fuel used × coefficient by type of fuel

Source: Ministry of the Environment, Summary of Energy & Economic Statistics

	Fiscal year	2009	2010	2011	2012	2013	2014	Unit
SOx emissions (fr	om KEPCO power plants)*1	1,520	2,224	5,180	6,230	7,089	5,635	t
SOx emissions	For KEPCO-generated power*2	0.012	0.017	0.042	0.054	0.062	0.052	a/k/M/b
intensity	For KEPCO-generated thermal power*3	0.035	0.045	0.069	0.072	0.077	0.059	g/kvvn
NOx emissions (fr	rom KEPCO power plants)*4	4,302	5,356	7,445	9,448	10,013	8,221	t
NOx emissions	For KEPCO-generated power*5	0.035	0.041	0.061	0.082	0.087	0.076	a////h
intensity	For KEPCO-generated thermal power*6	0.100	0.108	0.099	0.109	0.108	0.086	g/kvvn
Amount of limesto	one used	30	66	77	92	87	79	1,000 t
Amount of ammor	mount of ammonia used			12	13	14	15	1,000 t
COD emissions*7			21	35	23	27	18	t
Amount of industrial water used (for power generation)			432	446	467	446	431	10,000 m³
Amount of service	e water used (for power generation)	120	105	197	203	222	205	10,000 m³
River water, groui	ndwater	80	86	55	40	42	40	10,000 m ³
Seawater (desalin	nated)	278	329	266	282	263	245	10,000 m³
Revegetation	Thermal power plants	37	37	37	37	37	38	
rate*8	Nuclear power plants	79	79	78	77	75	74	%
(end of fiscal year)	(end of fiscal year) Electric power offices (substations)		28	28	28	28	28	
Rate of conversion to underground transmission lines (end of fiscal year)			19.4	19.5	19.5	19.5	17.1	%
Rate of conversio (end of fiscal year	n to underground distribution lines	9.9	9.9	10	10	10.1	10.1	%

Local environmental conservation

*1 SOx emissions: Calculated from amount of sulfur in fuel and removals by desulfurization equipment

*2 SOx emissions intensity (for KEPCO-generated power)=SOx emissions (KEPCO power stations) ÷KEPCO-generated power

*3 SOx emissions intensity (for KEPCO-generated thermal power) = SOx emissions (KEPCO power stations) \div KEPCO-generated thermal power

*4 NOx emissions: gauge-measured values

- *5 NOx emissions intensity (for KEPCO-generated power)=NOx emissions (KEPCO power stations) ÷KEPCO-generated power
- *6 NOx emissions intensity (for KEPCO-generated thermal power) = NOx emissions (KEPCO power stations) \div KEPCO-generated thermal power

*7 COD emissions: calculated from values measured by analysis of concentration in wastewater

*8 Revegetation rate=(Business site revegetation area ÷ Business site total area) × 100

Industrial waste, resource recycling

Fiscal	year	2009	2010	2011	2012	2013	2014	Unit
Amount of Industrial Waste an	nd Other Emissions	291.5	665.8	713.8	790.9	747.1	698.6	
 Soot particles (Heavy/cru 	de oil ash, coal ash, etc.)	151.5	449.0	465.6	509.7	477.1	474.3	
 Sludge (Desulfogypsum, wasteway) 	ater processing sludge, etc.)	56.1	120.1	141.2	172.6	156.9	143.2	
Cinders		21.4	27.1	25.0	33.9	29.7	27.4	
 Demolition debris (Waste concrete utility po 	les, etc.)	17.9	18.5	18.8	18.1	19.3	21.7	1,000 t
 Metal scraps 		30	33.5	38.3	27.1	42.4	21.0	
 Glass/ceramic scraps (Thermal insulation scrap) 	s, insulator scraps, etc.)	3.1	3.0	3.1	2.6	2.7	2.5	
Waste oil		3.7	8.9	9.5	8.5	3.4	2.4	
 Waste plastic 		1.2	1.4	1.4	1.3	1.2	1.0	
•Other			4.1	10.8	17.0	14.5	5.1	
Amount of industrial waste for	landfill disposal	3.8	2.2	1.4	0.9	1.3	1.2	
 Glass/ceramic scraps (Thermal insulation scrap) 	s, insulator scraps, etc.)	0.71	0.15	0.16	0.08	0.11	0.12	
 Sludge (Wastewater proc 	essing sludge, etc.)	2.53	1.27	0.6	0.55	0.73	0.74	
 Demolition debris 		0.14	0.42	0.22	0.04	0.09	0.11	1,000 t
 Cinders 		0.07	0.1	0.01	0.0	0.0	0.0	
Waste plastic		0.11	0.16	0.16	0.07	0.23	0.07	
 Metal scraps 		0.09	0.04	0.09	0.06	0.10	0.05	
•Other			0.03	0.11	0.07	0.06	0.13	
Industrial waste recycling rate*1			99.7	99.8	99.9	99.8	99.8	%
Low-concentration PCB industrial waste	Insulating oil	5.7	6.2	7.1	7.7	7.7	7.7	10,000 kL
Amount processed*2 (utility pole transformers)	Transformer cases*3	12.7	14.8	16.6	18.6	20.6	22.7	10,000 units
Green procurement rate for o	ffice supplies*4	97	97	98	98	80	82	%

*1 Industrial waste recycling rate = [(Industrial waste and other emissions - Amount of landfill disposal) ÷ (Industrial waste and other emissions)] ×100

*2 Values are cumulative values from past fiscal years; figures in parentheses indicate percentage applicable for processing

*3 Internal members of utility pole transformers are restocked

*4 Green procurement rate for office supplies = (Price for green procurement of office supplies (43 applicable categories) ÷ total price for purchasing office supplies (43 applicable categories))

Management of chemical substances (PRTR)

Name of targeted		Emissions (t/year)										
chemical substance	FY2009	FY2010	FY2011	FY2012	FY2013	FY2014						
2-aminoethanol	0	0	0	0	0	0						
Asbestos (specified)	0	0	0	0	0	0						
Bisphenol A epoxy resin	<0.1	/	/	/	/	/						
Ethylbenzene	10	13	15	6.1	6.0	6.2						
Ferric chloride	1	0	0	0	0	0						
Xylene	31	31	31	11	12	12						
HCFC-225	5.6	14	3.0	4.9	3.6	-						
Styrene	5.3	-	-	-	2.6	-						
Dioxins (specified)	0.50 (mg-TEQ/ year)	0.13 (mg-TEQ/ year)	0.13 (mg-TEQ/ year)	0.041 (mg-TEQ/ year)	0.13 (mg-TEQ/ year)	0.28 (mg-TEQ/ year)						
1,2,4-trimethylbenzene	-	-	1.1	-	-	-						
Toluene	7.4	9.5	8.2	16	14	12						
Hydrazine	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1						
n-Hexane	-	-	-	7.3	8.3	5.9						
Benzenes (specified)	-	-	<0.1	3	3.3	2.4						
Tris phosphate	0	1	1	1	/	/						
Boron compound	-	0	<0.1	0	0	0						
PCB	-	-	0	-	-	-						
Methylnaphthalene	/	1.6	1.2	2.7	2.8	3.3						
Methylenebis (4,1-phenylene) diisocyanate	-	-	-	0	-	-						

Name of targeted	Amount moved (t/year)									
chemical substance	FY2009	FY2010	010 FY2011 F		FY2013	FY2014				
2-aminoethanol	10	12	4.5	3.7	5.6	8.9				
Asbestos (specified)	20	11	16	15	2.7	5.1				
Bisphenol A epoxy resin	0	1	1	1	/	/				
Ethylbenzene	0	0	<0.1	<0.1	0	0				
Ferric chloride	/	0	0	0	0	3.0				
Xylene	0	0	0.22	0.16	0	0				
HCFC-225	0	0	0	0	0	-				
Styrene	0	-	-	-	0	-				
Dioxins (specified)	8.2 (mg-TEQ/ year)	7.0 (mg-TEQ/ year)	0.0066 (mg-TEQ/ year)	0.0023 (mg-TEQ/ year)	0.0016 (mg-TEQ/ year)	0.0050 (mg-TEQ/ year)				
1,2,4-trimethylbenzene	-	-	0	-	-	-				
Toluene	0	0	0.44	<0.1	0	0				
Hydrazine	4.0	0.41	8.1	<0.1	<0.1	3.1				
n-Hexane	-	-	-	0	0	0				
Benzenes (specified)	-	-	0	0	0	0				
Tris phosphate	13	1	1	/	/	/				
Boron compound	-	0	4.6	9.4	1.1	6.7				
PCB	-	-	0.87	-	-	-				
Methylnaphthalene	/	0	0	<0.1	0	<0.1				
Methylenebis (4,1-phenylene) diisocyanate	-	-	-	0	-	-				

Notes:

• The chart show total values reported in compliance with the PRTR Law

• "0" indicates no emissions or transfers at targeted business site

• "<0.1" indicates less than 0.1 t/year emissions, etc.

•"-" indicates no business sites targeted for totalling

• Significant figures are displayed in two digits

•"/" indicates that due to changes in the PRTR Law in Nov. 2008, the substance became targeted for reporting in FY2010, so no totals exist for FY2009 or earlier

•With regard to totals reported up to FY2009 for bisphenol A epoxy resin and tris phosphate (DMPP), due to changes in the PRTR Law in Nov. 2008, the substance was no longer targeted for reporting from FY2010 on

Radioactive substances, radioactive waste

Fiscal year		2009	2010	2011	2012	2013	2014	Unit
Evaluated dose values for the public in the vicinity of power plants	Mihama Nuclear Power Station	<0.001	<0.001	<0.001	<0.001	N.D.	N.D.	Millisieverts*1
	Takahama Nuclear Power Station	<0.001	<0.001	< 0.001	<0.001	N.D.	< 0.001	
	Ohi Nuclear Power Station	<0.001	<0.001	< 0.001	N.D.	N.D.	N.D.	
Radioactive solid nuclear waste generated (200-L drums)*2		14,139	13,382	10,132	8,437	10,936	12,472	
Mihama Nuclear Power Station		4,086	5,388	3,963	4,209	4,229	4,888	Equivalent in drums
Takahama Nuclear Power Station		4,563	3,244	2,440	1,658	2,213	3,084	
Ohi Nuclear Power Station		5,490	4,750	3,729	2,570	4,424	4,500	
Radioactive solid nuclear waste shrinkage (200-L drums)*2		6,531	9,595	10,485	10,675	12,476	15,082	
Mihama Nuclear Power Station		3,715	4,759	4,219	4,750	4,085	5,710	Equivalent in drums
Takahama Nuclear Power Station		1,201	1,844	2,817	2,736	3,397	3,152	
Ohi Nuclear Power Station		1,615	2,992	3,449	3,189	4,994	6,220	
Radioactive solid nuclear waste cumulative amount stored (200-L drums) $^{\star 2}$		104,788	108,575	108,223	105,986	104,445	101,835	-
Mihama Nuclear Power Station		28,267	28,896	28,640	28,100	28,313	27,491	Equivalent in drums
Takahama Nuclear Power Station		45,238	46,638	46,262	45,184	44,000	43,932	
Ohi Nuclear Power Station		31,283	33,041	33,321	32,702	32,132	30,412	

*1 Millisieverts (effective dose): unit indicating the degree of radiation's effect on the human body

*2 Storage conditions at solid nuclear waste repositories