Environmental data 2020

Reporting Coverage

Reporting coverage of Kansai Electric Power and its 80 consolidated subsidiaries (as of the end of March 2020)

(1) Specific data of environmental impact including electricity consumption in an office is grasped and reported in this report \Rightarrow **97.1%**

<Explanation>

It represents the ration of companies that are performing Eco-Action among 80 consolidated subsidiaries (ratio of sales).

<Calculation Method>

(Sales of Kansai Electric Power in FY 2019) +

(Sales of 38 consolidated subsidiaries in FY 2019 that are performing Eco-Action as of the end of March 2020)

(Sales of Kansai Electric Power in FY 2019) +

(sales of 80 consolidated subsidiaries in FY 2019)

* Eco-Action

It is the environmental action plan including the reducing office electricity consumption and office water consumption

Status overview of our business activities and environmental load

Input

Fuels for power generation								
eration	Coal	3,305,000 t (dry coal weight)						
er ger	Heavy oil	48,000 kL						
Mod	Crude oil	30,000 kL						
arma	LNG (liquefied natura	ll gas) 6,502,000 t						
Fuels for thermal power generation	Wood pellets Other	200 kL (heavy oil equivalent) 202,000 kL (heavy oil equivalent)						
Fuels for nuclear 52 tU power generation (weight of pre-irradiation uranium)								

Water for power generation

Industrial water	2.64 million m ³
Clean water	0.92 million m ³
River water, groundwater, etc. Seawater (desalinated)	0.41 million m³ 2.92 million m³

Resources

61,000
8,000

	Office				
Off	ice electricity	75 GWh			
Off	ice water	0.41 million m ³			
Co	py paper	747 t			
Vehicle fuels	Gasoline Diesel oil	1,700 kL 400 kL			

Business activities

Power g	Power generation						
Nuclear power generation*1	26.7 TWh						
Thermal power generation ^{*1}	57.9 TWh						
Hydropower generation*1	13.5 TWh 0.07 TWh from small-scale hydropower generation						
Renewable energies*1	0.01 TWh						
Purchased from other companies 22.7 TWh (of which solar, wind, small-scale hydropower, biomass, and waste-derived power 5.6 TWh	Pumped-storage hydropower -2.6 TWh						
Power transmissi	ion and distribution						
SF₀ gas recovery rate	(upon inspection) 99.0%						
	Losses in transmission and distribution including electricity consumed within transformer substations -5.3 TWh						

Output

	Released into at	· · · · · · · · · · · · · · · · · · ·
co	2 (carbon dioxide)*2	38,440,000 t-CO2 (35,940,000 t-CO2)*3
	(nitrous oxide)*4	2,3000 t-CO2
	(sulfur hexafluoride)*4	3,8000 t-CO2
SO	x (sulfur oxides)	2,138 t
NO	x (nitrogen oxides)	4,414 t
	Released into w	ater areas
	D emissions	22 t
То	tal effluents	4.20 million m ³
	Radioactive	waste
	v-level radioactive	507 drums
wa	ste generated ^{*5}	(200 L drums)
	Industrial wa	ste, etc.
То	tal emissions	621,000 t
<u>Pioi</u>	Recycling	617,000 t
cessi ificat	Reduction in intermediate treatment	33,000 t
Class	Final disposal	11,000 t
	Recycling rate	99.8%
CO ₂	emissions resulting fro	om office activities
_	tal emissions	28,797 t-CO2
down	Office electricity (0.318 kg-CO ₂ /kWh)	23,743 t-CO2
sbreal	Office water (0.23 kg-CO ₂ /m ³)	95 t-CO2
Emissions breakdowr	Vehicle fuels (Gasoline: 2.322 kg-CO ₂ /L) (Diesel oil: 2.585 kg-CO ₂ /L)	
The	ures in parentheses are CO: e emission factor for office e ects carbon credit offsets a	electricity consumption
	Custom	ers
	ectric power old	113.0 TWh

Note 1: This table contains non-consolidated figures for Kansai Electric Power Co., Inc. only. Note 2: Totals may not sum due to rounding. *1 Excludes amounts of power for inside power plants

- *2 Includes CO₂ originating from electricity purchased from other companies *3 Emissions reflecting environmental values, etc. adjusted according to the renewable energy feed-in tariff system
- *4 CO2 conversion
 - *5 Net generation (generated amount reduced amount)

Note 3: Thermal power generation figures do not include biomass power generation.

3

Environmental accounting (KEPCO 1)

KEPCO has introduced environmental accounting both on a non-consolidated basis and for group companies to clarify the costs of environmental conservation in our business activities and the benefits achieved.

FY2019 assessment (Environmental conservation costs)

For environmental conservation costs, investments were about 4 billion yen, about 600 million more than the previous fiscal year. Due to SF6 gas recovering costs and other cost reduction efforts, expenses were about 16.7 billion yen, which is about 130 million yen less than the previous fiscal year.

Environmental conservation costs (100 million yen)

<u> </u>	Inves	tment	Expenses		M-:
Category	FY2018	FY2019	FY2018	FY2019	Major items
 Global environmental conservation costs (CO₂ reductions, etc.) 	0.1	0.1	4.9	2.0	SF_6 gas collection
2. Local environmental conservation costs	39	38	40.5	37.7	
(1)Measuring/monitoring environmental impact	1.3	2.4	16.1	14.3	Radiation control and measurement, air quality concentration measurement, marine area surveys
(2)Pollution control(air pollution, water contamination, oil leakage, etc.)	37.3	35.2	16.4	15.6	Air pollution control measures, water contamination prevention measures
(3)Nature conservation	0	0	8.0	7.8	Revegetation
3. Costs to build a circular economy	1.3	2.9	117.4	123.1	
(1)Industrial waste processing, recycling	1.2	2.8	53.9	57.8	Industrial waste processing, PCB processing
(2)General waste processing, recycling	0	0	0.1	0.0	Paper recycling
(3)Radioactive waste processing	0	0	63.4	65.3	Low-level radioactive waste processing
(4)Green purchasing	0.1	0.1	0	0	Research-related work
4. Environmental management costs	0	0	0.7	0.7	Environmental reports
5. R&D costs	0.1	0.1	4.4	3.0	Load leveling, environmental conservation, energy savings and recycling, natural energy
6. Other costs	0	0	0.2	0.2	Research Laboratory repairs
Total	40.0	40.6	168.0	166.7	
Total capital investment during the period	3,693	4,472	_	_	
Operating expenses during period	-	_	26,632	25,332	

Note: Based on the Environmental Reporting Guidelines (FY2005 version) issued by the Ministry of the Environment. Depreciation is not calculated into expenses. Composite costs are tallied proportionally by one of three methods: (1)calculation of differences; (2) proportional division based on rational criteria; (3) proportional division based on criteria of expediency. Costs involved in generating nuclear power are calculated with the sum of individual measures to protect the environment taken as environmental conservation costs (radiation control and measurement, low-level radioactive waste processing, etc.). Figures may not add up due to rounding off.

Environmental accounting (KEPCO 2)

FY2019 assessment (Effects of environmental conservation)

CO2 emissions intensity is expected to improve greatly compared to the previous fiscal year. As a leading "decarbonization" company, we are committed to safely and stably operating Takahama Nuclear Power Station Units 3 and 4 and Ohi Nuclear Power Station Units 3 and 4 while developing and promoting renewable energy. Our efforts have resulted in a reduction in CO2 emissions of about 40% from 2013 levels.

Furthermore, we reduced SOx and NOx emissions intensities compared to the previous fiscal year through the appropriate use of sulfur scrubbers and nitrogen scrubbers and other efforts.

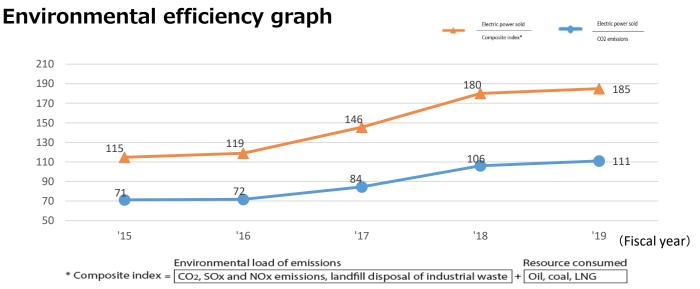
Category	Item (uni	t)	FY2018	FY2019	Year-on-year change		
	CO ₂ emissions (basic)	(10,000t-CO ₂)	4,153	3,844	▲ 309		
1. Global environmental	CO ₂ emissions intensity (basic)	(kg-CO ₂ /kWh)	0.352	0.340	▲ 0.01		
conservation	CO ₂ emissions (after adjustment)	(10,000t-CO ₂)	3,936	3,594	▲ 342		
	CO ₂ emissions intensity (after adjustment)	(kg-CO ₂ /kWh)	0.334	0.318	▲ 0.02		
	Air pollution control						
	SOx emissions	(t)	2,351	2,138	▲ 213		
2. Local	SOx emissions intensity	(g/kWh)	0.037	0.036	▲ 0.001		
environmental	NOx emissions	(t)	4,686	4,414	▲ 272		
conservation	NOx emissions intensity	(g/kWh)	0.074	0.074	0.000		
	Landscape integration						
	Revegetation area	(1,000 m ²)	3,313	3,109	▲ 204		
3. Building a	Industrial waste and other emissions	(1,000 t)	580	621	41		
circular economy	Recycling rate for industrial waste, etc	(%)	99.8	99.8	0.0		
	Low-level radioactive waste processing	(Rods)	2,701	507	▲ 2,194		

Effects of environmental conservation

Note: CO₂ emissions: including from power supplied by other companies; CO₂ emissions and CO₂ emissions coefficient: The results for FY2019 are provisional; the actual CO2 emission factor will be officially announced by the government in accordance with the Law Concerning the Promotion of the Measures to Cope with Global Warming, etc.; CO₂ emissions coefficient: by amount of power sold(adjusted CO2 emissions include the environmental value adjustments under the surplus solar power purchasing system and the renewable energy feed-in tariff system.); SOx and NOx emissions: only KEPCO-generated power; SOx and NOx emissions coefficient: by amount of power generated by KEPCO thermal power plants

FY2019 assessment (Economic benefits from environmental conservation measures)

Economic benefits increased approximately 0.1 billion yen from the previous year due to an increase of gain on sale of disused article etc.


Economic benefits from environmental conservation measures (100 million yen)

	Category		FY2018	Major Items
Revenue	Operating revenues from recycling, etc.	39.9	34.8	Gain on sale of disused articles(recycling)
	Cost Cost savings from reuse and		0.1	Cost savings from the purchase of recycled items
Total		40.0	34.9	

Environmental efficiency

Environmental efficiency (with FY1990 as the base year) is calculated to indicate the relationship between environmental load and economic value.

Environmental efficiency for fiscal 2019 include scores of 185 for electric power sold/composite index, which is an increase of 5 points from the previous fiscal year, and 111 for electric power sold/CO2 emissions, which is an increase of 5 points from the previous fiscal year. We consider that the main factor for it is increase in rate of CO2-free power generation in the total of power generation.

Note: LIME2 integration coefficients developed by the National Institute of Advanced Industrial Science and Technology have been used for calculations since fiscal 2007.

Environmental accounting (group companies)

Environmental conservation costs (million yen)

Category	Major Items	Invest	ment	Expenses		
Category		FY2018	FY2019	FY2018	FY2019	
Costs for pollution control	Air, water and soil pollution prevention	0	0	32.2	31.5	
Costs for resource recycling	General and industrial waste processing and recycling	0.2	0.3	83.2	82.3	
Costs for management activities	Environmental protection efforts, environmental education and related activities at business places and in their neighborhoods	0	0.4	25.1	24.1	
Costs for community activities	Contributions to and support of environmental protection activities and environmental protection organizations outside the company	0	0	0	0	
Costs for research and development	Research and development of products, for example, that contribute to environmental protection	0	0	11.0	7.7	
Costs related to environmental damages	Natural restoration, damage compensation, etc.	0	0	0.3	0.3	
Other costs		-	-	0	0	
	Total	0.2	0.7	151.8	145.9	

Environmental conservation effects (physical effects)

Category	Items (unit)	FY2018	FY2019
Global and local	CO_2 emissions (10,000 t- CO_2)	12.5	11.1
environmental conservation	SOx emissions (t)	0.3	0.3
	NOx emissions (t)	52.3	59.7
Environmental management	ISO or other external certifications(locations)*	5	5
Building a circular economy	Industrial waste emissions (1,000 t)	86.4	62.4

*Cumulative to end of fiscal year

Economic benefits from environmental conservation effects (million yen)

Category	Major Items	FY2018	FY2019
Revenue	Business income from recycling	5.3	18.1
Cost savings Cost savings from re-use and recycling, etc.		0.0	0.1
	Total		18.1

OInitiatives contributing to the realization of a low-carbon society

GHG emissions (non-consolidated)	Unit	FY2017	FY2018	FY2019
Direct greenhouse gas emissions (Scope 1)*1*2*3	10,000 t-CO2	3,281.4	2,865.7	2,663.2
Electricity indirect greenhouse gas emissions (Scope 2)*1*2*4	10,000 t-CO2	1.0	0.6	0.5
Other indirect greenhouse gas emissions (Scope 3)*1*5	10,000 t-CO2	3,115.1	3,784.5	3,173.9
Category 1 ^{*6}		129.6	123.2	142.7
Category 2*7		80.0	102.6	129.3
Category 3 ^{*8}		2,903.2	3,556.6	2,900.0
Category 4 ^{*9}		0.1	0.1	0.0
Category 5 ^{*10}		1.2	1.1	1.0
Category 6 ^{*11}		0.3	0.3	0.3
Category 7*12		0.8	0.6	0.6
Category 8*13	10,000 t-CO ₂	—	—	—
Category 9 ^{*13}		—	—	—
Category 10 ^{*13}		—	—	—
Category 11 ^{*13}		—		_
Category 12*13				
Category 13 ^{*13}				
Category 14 ^{*13}		—	_	_
Category 15 ^{*13}		_	_	_

- *1 The amount of greenhouse gases emitted in our entire supply chain is calculated in accordance with the Basic Guidelines on Accounting for Greenhouse Gas Emissions Throughout the Supply Chain (ver. 2.3) issued by the Ministry of the Environment and the Ministry of Economy, Trade and Industry.
- *2 GHG emissions (non-consolidated) in fiscal 2019 include those of Kansai Transmission and Distribution, Inc., which was later spun off.
- *3 Direct GHG emissions (Scope 1) refer to emissions (energy-derived CO₂, SF₆ and N₂O emissions) reported by electric companies in line with the Law Concerning the Promotion of the Measures to Cope with Global Warming along with CO₂ emissions from transportation fuel use, which are excluded from the reporting obligations. SF₆ emissions are based on the calendar year.
- *4 Electricity indirect GHG emissions (Scope 2) include CO₂ emissions originating from electricity and heat purchased from external corporations, which should be reported by electric operators in line with the Law Concerning the Promotion of the Measures to Cope with Global Warming. For electricity, adjusted factor was used.
- *5 Indirect emissions not covered by Scope 1 or Scope 2 (emissions from other corporations related to the business activities of the company concerned)
- *6 Product/service price (purchased or obtained) × emission intensity
- *7 Capital goods price × emission intensity
- *8 Fuel consumption × emission intensity + electricity purchased externally × emission factor
- *9 Fuel consumption × emission intensity
- *10 Waste disposal volume × emission intensity + fuel consumption × emission intensity
- *11 Number of employees × emission factor
- *12 (City classification-based) Σ (number of employees \times operating days \times emission intensity)
- *13 Not applicable because of specific to our business

OInitiatives contributing to the realization of a low-carbon society

The Group's CO2 emissions and their factors associated with power generation in Japan	Unit	FY2017	FY2018	FY2019
CO ₂ emissions ^{*1}	10,000 t-CO2	3,420	3,040	2,850
CO ₂ emission factor (at the generation end) (per power generation output) ^{*2}	kg-CO2/kWh	0.357	0.287	0.287

*1 CO2 emissions refer to those produced by fuel combustion at the Group's thermal power plants in Japan.

*2 CO2 emission factor (at the generation end) corresponds CO2 emissions per kWh of the Group's domestic power generation business

CO2 emission factor (at the generation end) = CO2 emissions of the Group's domestic power generation business + amount of power generated

CO_2 emissions and retail emission factors of our Company	Unit	FY2017	FY2018	FY2019
CO ₂ emissions (before adjustment) ^{*1}	10,000 t-CO2	5,018	4,153	3,844
CO ₂ emissions (after adjustment)* ²	10,000 t-CO2	4,822	3,936	3,594
CO ₂ emission factor (energy used) (before adjustment) (per amount of electric power sold) ^{*3}	L- 00 (1)4/1	0.435	0.352	0.340
CO ₂ emission factor (energy used) (after adjustment) (per amount of electric power sold) ^{*3}	- kg-CO2/kWh	0.418	0.334	0.318

*1 CO2 emissions refer to those produced by fuel combustion at the thermal power plants and include those for power purchased from other corporations.

*2 Adjusted CO2 emissions include the environmental value adjustments under the surplus solar power purchasing system and the renewable energy feed-in tariff system.

CO2 emissions = CO2 emissions (before adjustment) + CO2 emissions (after feed-in tariff adjustment, etc.)

*3 CO₂ emission factor (energy used) corresponds CO₂ emissions per kWh of Kansai Electric Power Company electricity used. CO₂ emission factor (energy used) (before adjustment) = CO₂ emissions (before adjustment) + amount of electric power sold

CO2 emission factor (energy used) (after adjustment) = CO2 emissions (after adjustment) ÷ amount of electric power sold

*1,2,3 The results for FY2019 are provisional; the actual CO₂ emission factor will be officially announced by the government in accordance with the Law Concerning the Promotion of the Measures to Cope with Global Warming, etc.

Greenhouse gases other than CO ₂ (non-consolidated)	Unit	FY2017	FY2018	FY2019
N₂O (dinitrogen oxide)*1	10,000 t-CO2	2.8	2.4	2.3
SF ₆ (sulfur hexafluoride) ^{*1*2}	10,000 t-CO2	4.6	5.1	3.8

*1 CO₂ equivalent

*2 SF6 emissions are based on the calendar year

Utilization rate of nuclear power facilities and net thermal efficiency of thermal power facilities, both operated by our Company	Unit	FY2017	FY2018	FY2019
Utilization rate of nuclear power facilities*1	%	18.0	54.6	48.4
Net thermal efficiency of thermal power facilities*2	%	48.3	49.0	48.6

*1 Utilization rate of nuclear power facilities = amount of power generated ÷ (permitted output × calendar hours) × 100

*2 Net thermal efficiency of thermal power facilities = (amount of power transmitted × quantity of heat per kWh) + total amount of input heat (lowest heat value standard) × 100

OInitiatives contributing to the realization of a low-carbon society

Energy consumption (non-consolidated)		Unit	FY2017	FY2018	FY2019
Total energy consumption ^{*1}		1,000 GJ	554,656	492,321	460,060
	Coal	1,000 t	4,288	3,455	3,305
	Heavy oil	1,000 kL	157	136	48
There a final and a second sec	Crude oil	1,000 kL	345	194	30
Thermal fuel consumption*2	LNG	1,000 t	7,287	6,734	6,502
	Wood pellets	1,000 kL	16	2	0.2
	Other	(heavy oil equivalent)	361	288	202
Fuels for nuclear power generation (weight of pre-irradiation uranium)*2		tU	37	87	52

*1 These figures are reported to the government in accordance with the Act on the Rational Use of Energy. (Fossil fuel consumption, purchased electricity, and purchased heat)

*2 Data exclusive to our Company

Eco Action-related (non-consolidated)		Unit	FY2017	FY2018	FY2019
SF₀ gas emissions		t	0.1	0.2	0.1
	Upon inspection	t	0	0.2	0.1
	•Upon removal	t	0.1	0.1	0.0
SF₅ gas recover	y rate				
	Upon inspection	%	99.6	98.5	99.0
	•Upon removal	%	99.3	99.3	99.4
Transmission and distribution loss rate ^{*1*2}		%	4.4	5.1	4.8

*1 Transmission and distribution loss rates = (area transmission-end power – area consumption power (end use) – substation power) / area transmission-end power × 100 [%] "Area" in this case refers to the entire supply area of Kansai Transmission and Distribution, Inc.

*2 Data of Kansai Transmission and Distribution, Inc. only

Development and promotion of renewable energy (consolidated)		Unit	FY2017	FY2018	FY2019	
Development		Capacity of facilities that have begun operation (completed construction)		*	372.46	388.58
and promotion of renewable energy		Projects underway	10,000 kW	*	66.14	54.02
	9)	Accumulated installed capacity		*	438.60	442.60
	۰So	lar power generation	10,000 kW	*	8.17	8.17
	۰Wi	ind power generation	10,000 kW	*	30.40	30.95
	۰Hy	droelectric power generation	10,000 kW	*	374.36	377.80
Biomass power generation		10,000 kW	*	25.67	25.67	
•Geothermal power generation		10,000 kW	*		0.01	

* Shown are the results in FY2018-2019, with targets revised to "achieve 6 million kW of installed capacity by 2030s (2 million kW or more new development in Japan and abroad)" in line with the Kansai Electric Power Group Medium-term Management Plan (2019-2021), which was set out in 2019.

$\bigcirc\ensuremath{\mathsf{Initiatives}}$ contributing to the realization of a low-carbon society

Office-related (non-consolidated)		Unit	FY2017	FY2018	FY2019
	Office electricity consumption*1	GWh	77	74	75
	Office water consumption*1	1,000 m³	452	426	413
F	Fuel efficiency of company vehicles	km/L	11.31	11.4	10.95
Energy and resource conservation (Office division)	Vehicle fuel consumption (gasoline)	1,000 kL	2.1	2.0	1.7
	Vehicle fuel consumption (diesel oil)	1,000 kL	0.3	0.3	0.4
	Copy paper consumption	t	809	773	747
	Office electricity	10,000 t-CO2	3.3	2.4	2.4
CO ₂ emissions resulting from office activities ^{*2}	Office water	10,000 t-CO2	0.01	0.01	0.01
	Vehicle fuels	10,000 t-CO ₂	0.6	0.5	0.5

*1 The scope of this calculation was reviewed for the actual consumption amounts of office electricity and water.

*2 CO₂ emissions from office activities = amount of electricity consumption × adjusted factors CO₂ emissions from office water consumption = amount of office water consumption × emission factor CO₂ emissions from vehicle use = amount of vehicle fuel consumption × coefficient by type of fuel

$\bigcirc\ensuremath{\mathsf{Initiatives}}$ contributing to the realization of a recycling-oriented society

Waste-related (non-consolidated)*1	Unit	FY2017	FY2018	FY2019
Amount of industrial waste and other emissions		653.6	580.0	621.3
 Soot particles (heavy/crude oil ash, coal ash, etc.) 		438.3	387.0	384.7
Sludge (desulfogypsum, waste water processing sludge, etc.)		130.3	107.9	129.7
•Cinders		28.6	25.3	45.8
 Demolition debris (waste concrete utility poles, etc.) 		16.5	18.2	18.1
Metal scraps	1,000 t	29.1	23.9	25.5
Glass/ceramic scraps (thermal insulation scraps, insulator scraps)	etc.)	1.8	1.3	2.4
•Waste oil		2.2	3.0	4.1
Waste plastic		0.9	0.9	1.4
(Repeated) Ash and gypsum		592.7	515.7	553.2
•Other		6	12.6	9.6
(Repeated) Special controlled industrial waste	2	5.5	8.3	7.1
Amount of industrial waste for landfill disposal		0.9	0.9	1.1
 Glass/ceramic scraps (thermal insulation scraps, insulator scraps) 	etc.)	0.06	0.09	0.19
 Sludge (wastewater processing sludge, etc.) 		0.19	0.48	0.41
Demolition debris		0.03	0.03	0.00
• Cinders		0.00	0.00	0.00
Waste plastic	1,000 t	0.05	0.10	0.27
Metal scraps		0.19	0.05	0.03
•Other		0.42	0.14	0.20
(Repeated) Amount except for special controlled industrial wast	e	0.52	0.77	0.95
Industrial waste recycling rate ^{*2}	%	99.9	99.8	99.8
Ash and gypsum waste recycling rate*2	%	100	100	100
Amount of PCB waste* ³	1,000 t	4.7	7.4	6.6
Amount of high-level PCB processed (cumulative total)*4	units	5,073	5,241	5,365

*1 The totals may not match up due to rounding.

*2 Industrial waste recycling rate = [(industrial waste and other emissions - amount of landfill disposal) + (industrial waste and other emissions)] × 100

*3 Amount of detoxified PCB waste in landfill (high/low-level PCB) + recycled amount

*4 Number of transformers and capacitors containing high-level PCB, detoxified by JESCO

	Water consumption by our Company		Unit	FY2017	FY2018	FY2019
Total net fresh water consumption*1			5.35	5.19	3.97	
	River water			0.36	0.40	0.41
	Groundwate	er		0.00	0.00	0.00
	Total municipal water supplies			4.99	4.79	3.56
		Amount of industrial water used (for power generation)	million m ³	3.85	3.70	2.64
		Amount of service water used (for power generation)		1.14	1.09	0.92
Seawater (desalinated)*2			2.63	2.74	2.92	
(Repeated) Office	(Repeated) Office water consumption		1,000 m³	452	426	413

*1 Excluding desalinated seawater

*2 Desalinated seawater

OPromotion of environmental protection in local communities

	Fiscal year	2017	2018	2019	Unit
SOx emissions ^{**1}		2,734	2,351	2,138	t
SOx emissions intensity (for	KEPCO-generated power) ^{*2}	0.028	0.022	0.021	
SOx emissions intensity (by power generation)(for KEPC	volume of power from thermal Ogenerated power) ^{**3}	0.039	0.037	0.036	g/kWh
NOx emissions ^{#4}		5,402	4,686	4,414	t
NOx emissions intensity (for	KEPCO-generated power) *5	0.055	0.043	0.043	
NOx emissions intensity (by volume of power from thermal power generation)(for KEPCO-generated power) ^{×6}		0.077	0.074	0.074	g/kWh
Amount of limestone used		71	57	61	1,000 t
Amount of ammonia used		10	8	8	1,000 t
COD emissions ^{* 7}		18	21	22	t
Revegetation	Thermal power plants	38	38	39	
rate ^{* 8}	Nuclear power plants	68	68	67	%
(end of fiscal year)	Electric power offices (substations)	28	28	28	
Rate of conversion to underground transmission lines (end of fiscal year)		17.3	17.4	17.5	%
Rate of conversion to under (end of fiscal year)	ground distribution lines	10.3	10.3	10.3	%

%1 This is calculated from amounts of sulfur in fuel as well as SOx concentrations in gas emissions (measured values) and gas emission volumes. (Some previous fiscal year amounts were calculated from the amount removed by desulfurization equipment.)

 \approx 2 SOx emissions intensity (for KEPCO-generated power) = SOx emissions amount \div power generated amount (for KEPCO-generated power)

*3 SOx emissions intensity (by volume of power from thermal power generation (for KEPCO-generated power)) = SOx emissions amount÷volume of power from thermal power generation (for KEPCO-generated power) *4 This is calculated from Sox concentrations in gas emissions (measured values) and gas emission volumes. 5 NOx emissions intensity (for KEPCO-generated power) = NOx emissions amount÷power generated amount

(for KEPCO-generated power) %6 NOx emissions intensity (by volume of power from thermal power generation (for KEPCO-generated power)) = NOx emissions amount÷volume of power from thermal power generation (for KEPCO-generated power)

%7 This is calculated from analyzed wastewater concentration values.

%8 Revegetation rate = (Business site revegetation area + Business site total area) × 100

OManagement of chemical substances (PRTR)

Name of targeted	En	nissions (t/yea	r)
chemical substance	2017	2018	2019
2-aminoethanol	0.0	_	—
Asbestos (specified)	0.0	0.0	0.0
Ethylbenzene	3.8	4.7	8.6
Ferric chloride	0.0	0.0	0.0
Xylene	5.4	6.5	12
Dioxins (specified)	0.35	0.065	0.24
	(mg-TEQ/year)	(mg-TEQ/year)	(mg-TEQ/year)
1,2,4-trimethylbenzene	1.9	< 0.1	-
Toluene	5.9	4.9	8.7
Hydrazine	< 0.1	< 0.1	< 0.1
Benzenes (specified)	0.2	0.1	<0.1
Boron compound	0.0	—	0.0
РСВ	_	0.0	0.0
Methylnaphthalene	2.4	1.4	1.2
Bromotrifluoromethane	_	0.0	-
Nonylphenoxypolyoxyethan ol	-	0.0	-
Ethylenediaminetetraacetic			0.0
acid	_	_	0.0
	– Amo	– unt moved (t/y	
Name of targeted		- unt moved (t/y 2018	vear)
Name of targeted chemical substance	2017	- unt moved (t/y 2018 -	
Name of targeted chemical substance 2-aminoethanol		2018	vear) 2019 –
Name of targeted chemical substance 2-aminoethanol Asbestos (specified)	2017 4.1 4.7	2018 - 6.8	/ear) 2019 — 1.6
Name of targeted chemical substance 2-aminoethanol Asbestos (specified) Ethylbenzene	2017 4.1 4.7 0.0	2018 - 6.8 0.0	/ear) 2019 - 1.6 <0.1
Name of targeted chemical substance 2-aminoethanol Asbestos (specified) Ethylbenzene Ferric chloride	2017 4.1 4.7 0.0 0.0	2018 6.8 0.0 1.0	/ear) 2019 - 1.6 <0.1 0.9
Name of targeted chemical substance 2-aminoethanol Asbestos (specified) Ethylbenzene Ferric chloride Xylene	2017 4.1 4.7 0.0 0.0 0.0	2018 - 6.8 0.0 1.0 0.0	/ear) 2019 - 1.6 <0.1 0.9 0.4
Name of targeted chemical substance 2-aminoethanol Asbestos (specified) Ethylbenzene Ferric chloride	2017 4.1 4.7 0.0 0.0 0.0 0.39	2018 - 6.8 0.0 1.0 0.0 0.030	/ear) 2019 - 1.6 <0.1 0.9 0.4 0.0043
Name of targeted chemical substance 2-aminoethanol Asbestos (specified) Ethylbenzene Ferric chloride Xylene Dioxins (specified)	2017 4.1 4.7 0.0 0.0 0.0 0.39 (mg-TEQ/year)	2018 - 6.8 0.0 1.0 0.0 0.030 (mg-TEQ/year)	/ear) 2019 - 1.6 <0.1 0.9 0.4
Name of targeted chemical substance 2-aminoethanol Asbestos (specified) Ethylbenzene Ferric chloride Xylene	2017 4.1 4.7 0.0 0.0 0.0 0.39	2018 - 6.8 0.0 1.0 0.0 0.030	/ear) 2019 - 1.6 <0.1 0.9 0.4 0.0043 (mg-TEQ/year) -
Name of targeted chemical substance 2-aminoethanol Asbestos (specified) Ethylbenzene Ferric chloride Xylene Dioxins (specified) 1,2,4-trimethylbenzene Toluene	2017 4.1 4.7 0.0 0.0 0.0 (mg-TEQ/year) 0.0 0.0	2018 – 6.8 0.0 1.0 0.030 (mg-TEQ/year) 0.0	/ear) 2019 - 1.6 <0.1 0.9 0.4 0.0043
Name of targeted chemical substance 2-aminoethanol Asbestos (specified) Ethylbenzene Ferric chloride Xylene Dioxins (specified) 1,2,4-trimethylbenzene Toluene Hydrazine	2017 4.1 4.7 0.0 0.0 0.0 (mg-TEQ/year) 0.0 0.0 0.0 2.5	2018 6.8 0.0 1.0 0.030 (mg-TEQ/year) 0.0 0.0 0.0 0.0 0.0	/ear) 2019 - 1.6 <0.1 0.9 0.4 0.0043 (mg-TEQ/year) - 0.8 0.0
Name of targeted chemical substance 2-aminoethanol Asbestos (specified) Ethylbenzene Ferric chloride Xylene Dioxins (specified) 1,2,4-trimethylbenzene Toluene Hydrazine Benzenes (specified)	2017 4.1 4.7 0.0 0.0 0.39 (mg-TEQ/year) 0.0 0.0 2.5 0.0	2018 – 6.8 0.0 1.0 0.030 (mg-TEQ/year) 0.0 0.0	<pre>/ear) 2019 1.6</pre>
Name of targeted chemical substance 2-aminoethanol Asbestos (specified) Ethylbenzene Ferric chloride Xylene Dioxins (specified) 1,2,4-trimethylbenzene Toluene Hydrazine Benzenes (specified) Boron compound	2017 4.1 4.7 0.0 0.0 0.0 (mg-TEQ/year) 0.0 0.0 0.0 2.5	2018 - 6.8 0.0 1.0 0.0 0.030 (mg-TEQ/year) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	/ear) 2019 - 1.6 <0.1 0.9 0.4 0.0043 (mg-TEQ/year) - 0.8 0.0 0.0 0.0 0.0
Name of targeted chemical substance2-aminoethanolAsbestos (specified)EthylbenzeneFerric chlorideXyleneDioxins (specified)1,2,4-trimethylbenzeneTolueneHydrazineBenzenes (specified)Boron compoundPCB	2017 4.1 4.7 0.0 0.0 0.39 (mg-TEQ/year) 0.0 0.0 2.5 0.0 8.4 -	2018 - 6.8 0.0 1.0 0.0 0.030 (mg-TEQ/year) 0.0 0.0 0.0 0.0 0.0 - 4.7	/ear) 2019 - 1.6 <0.1 0.9 0.4 0.0043 (mg-TEQ/year) - 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2.3
Name of targeted chemical substance2-aminoethanolAsbestos (specified)EthylbenzeneFerric chlorideXyleneDioxins (specified)1,2,4-trimethylbenzeneTolueneHydrazineBenzenes (specified)Boron compoundPCBMethylnaphthalene	2017 4.1 4.7 0.0 0.0 0.39 (mg-TEQ/year) 0.0 0.0 2.5 0.0	2018 - 6.8 0.0 1.0 0.030 (mg-TEQ/year) 0.0 0.0 0.0 0.0 0.0 - 4.7 <0.1	/ear) 2019 - 1.6 <0.1 0.9 0.4 0.0043 (mg-TEQ/year) - 0.8 0.0 0.0 0.0 0.0
Name of targeted chemical substance2-aminoethanolAsbestos (specified)EthylbenzeneFerric chlorideXyleneDioxins (specified)1,2,4-trimethylbenzeneTolueneHydrazineBenzenes (specified)Boron compoundPCBMethylnaphthaleneBromotrifluoromethane	2017 4.1 4.7 0.0 0.0 0.39 (mg-TEQ/year) 0.0 0.0 2.5 0.0 8.4 -	2018 - 6.8 0.0 1.0 0.0 0.030 (mg-TEQ/year) 0.0 0.0 0.0 0.0 - 4.7 <0.1 0.0	/ear) 2019 - 1.6 <0.1 0.9 0.4 0.0043 (mg-TEQ/year) - 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2.3
Name of targeted chemical substance2-aminoethanolAsbestos (specified)EthylbenzeneFerric chlorideXyleneDioxins (specified)1,2,4-trimethylbenzeneTolueneHydrazineBenzenes (specified)Boron compoundPCBMethylnaphthalene	2017 4.1 4.7 0.0 0.0 0.39 (mg-TEQ/year) 0.0 0.0 2.5 0.0 8.4 -	2018 - 6.8 0.0 1.0 0.030 (mg-TEQ/year) 0.0 0.0 0.0 0.0 0.0 - 4.7 <0.1	/ear) 2019 - 1.6 <0.1 0.9 0.4 0.0043 (mg-TEQ/year) - 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2.3

Notes : The chart show total values reported in compliance with the PRTR Law "0"indicates no emissions or transfers at targeted business site "<0.1"indicates less than 0.1 t/year emissions, etc. " - " indicates no business sites targeted for totaling • Significant figures are displayed in two digits

ORadioactive substances, radioactive waste

	Fiscal	year	2017	2018	2019	Unit	
	Evaluated dose values	Mihama Nuclear Power Station	N.D.	N.D.	N.D.		
	for the public in the vicinity of power plants	Takahama Nuclear Power Station	N.D.	N.D.	N.D.	Millisieverts ^{**1}	
Gaseous	(inert gases)	Ohi Nuclear Power Station	N.D.	N.D.	N.D.		
waste	Evaluated dose values	Mihama Nuclear Power Station	N.D.	N.D.	N.D.		
	for the public in the vicinity of power plants	Takahama Nuclear Power Station	N.D.	N.D.	N.D.	Millisieverts ^{** 1}	
	(iodine)	Ohi Nuclear Power Station	N.D.	N.D.	N.D.		
	Evaluated dose values	Mihama Nuclear Power Station	< 0.001	< 0.001	< 0.001		
Liquid	for the public in the	Takahama Nuclear Power Station	< 0.001	< 0.001	< 0.001	Millisieverts ^{** 1}	
waste	vicinity of power plants	Ohi Nuclear Power Station	< 0.001	< 0.001	< 0.001	,	
Radioactiv		Mihama Nuclear Power Station	N.D.	N.D.	N.D.		
waste disc	-	Takahama Nuclear Power Station	N.D.	N.D.	N.D.	Becquerel ^{* 2}	
(inert gas)	н	Ohi Nuclear Power Station	N.D.	N.D.	N.D.		
Radioactiv	e gaseous	Mihama Nuclear Power Station	N.D.	N.D.	N.D.		
waste disc		Takahama Nuclear Power Station	N.D.	N.D.	N.D.	Becquerel ^{**} 2	
(iodine)		Ohi Nuclear Power Station	N.D.	N.D.	N.D.	-	
Radioactiv	e gaseous	Mihama Nuclear Power Station	N.D.	N.D.	N.D.		
waste disc		Takahama Nuclear Power Station	N.D.	N.D.	N.D.	Becquerel ^{×2}	
(excluding	tritium)	Ohi Nuclear Power Station	N.D.	N.D.	N.D.	•	
Radioactiv	e solid nuclear waste generat	ed (200-L drums) ^{*4}	15,863	11,800	12,312		
	Mihama Nuclear Power Stat		5,000	4,828	3,918	Equivalent	
	Takahama Nuclear Power S	ation	5,722	4,396	4,624	in drums	
	Ohi Nuclear Power Station		5,141	2,576	3,770		
Radioactiv	e solid nuclear waste shrinkag	ge (200-L drums) ^{× 5}	14,412	9,099	11,805		
	Mihama Nuclear Power Stat		5,424	3,907	2,946		
	Takahama Nuclear Power St	ation	4,354	3,460	3,959	in drums	
	Ohi Nuclear Power Station		4,634	1,732	4,900		
	f solid radioactive waste gene		1,451	2,701	507		
solid radio	active waste reduced (200-L			,		Equivalent	
Mihama Nuclear Power Station Takahama Nuclear Power Station			-424	921	972	in drums	
			1,368 507	936	665		
	Ohi Nuclear Power Station			844	-1,130		
	Radioactive solid nuclear waste cumulative amount stored (200-L drums) ^{#7,8}			100,311	100,818		
(200 2 010	Mihama Nuclear Power Stat	on	25,251	26,172	27,144	Equivalent	
	Takahama Nuclear Power St		43,287	44,223	44,888	in drums	
	Ohi Nuclear Power Station		29,072	29,916	28,786		

*1 Millisieverts (effective dose): unit indicating the degree of radiation's effect on the human body

*2 Becquerel: Unit of radioactivity (one becquerel is defined as one nucleus decaying per second, representing the rate at which radioactive material emits radiation)

*3 Notes 4-7 are for the storage status at power plants

*4 This is the amount of solid low-level radioactive waste produced in the fiscal year.

*5 This is the total of amount of solid waste with low-level radioactivity reduced through incineration, for example, and transported out of facilities in the fiscal year.

*6 This is the net increase of solid waste with low-level radioactivity calculated by deducting the amount reduced from the amount generated in the fiscal year.

*7 Cumulative amount of low-level solid radioactive waste

*8 Totals might not match due to rounding after conversion to drum equivalent.

Environmental protection records at thermal power plants (1)

	Item			Sak Power	aiko Station	Tanagawa No. 2 Power Station	Nanko Power Station	Miyazu Energy Research Center	Kansai International Airport Energy Center	Maizuru Power Station
		Main fuel		L		Heavy/crude oil	L	Heavy/crude oil	Kerosene	Coal
		Amount emitted hourly	Air Pollution Control Law (total amount regulation)	8	4	-	98	306 ^{≋1}	13	515 ^{≋1}
		(m3N/h)	Agreed value	-		-	-	112	-	255
			Actual value		-	Stopped	-	Stopped	-	181
	Sulfur oxide	Amount emitted daily	Agreed value	10).1	9.3	-	I	-	-
		(t/d)	Actual value		-	Stopped	-	-	-	-
		Amount emitted annually	Agreed value	94	40	3,020	-	492×10 ³ m ³ N	-	1523×10 ³ m ³ N
		(t/y)	Actual value		-	Stopped	-	Stopped	-	789×10 ³ m ³ N
Air quality		Amount emitted hourly	Air Pollution Control Law (total amount regulation)	63	25	-	255	-	-	-
related		(m3N/h)	Agreed value		-	-	-	58	-	244
			Actual value	45.3		Stopped	35	Stopped	-	210
	Nitrogen oxide	Amount emitted daily	Agreed value	7	.7	7.2	1.8	-	-	-
		(t/d)	Actual value	2	.0	Stopped	1.1	-	-	-
		Amount emitted annually (t/y)	Agreed value	1,420		2,100	400	244×10 ³ m ³ N	-	1,457×10 ³ m ³ N
			Actual value	566		Stopped	137	Stopped	-	1,188×10 ³ m ³ N
	Soot particles	Emission concentration (g/m3N)	Air Pollution Control Law	0.04		0.07	0.03	0.05	0.05	0.1
			Agreed value	0.	02	0.02	Not emitted	0.014	-	0.009
			Actual value	<0.	002	Stopped	-	Stopped	-	0.005
	Water pollution laws and regulations			No.1 drain outlet 5.8	No.2 drain outlet ~8.6	5.8~8.6	5.0∼9.0 ^{≋2}	5.0~9.0	-	5.0~9.0
			Agreed value		-	5.8~8.6	-	5.8~8.6	-	5.8~8.6
			Actual value	7.9	7.6	Stopped	7.8	6.0~7.8	-	6.3~7.2
		Highest concentration	Water pollution laws and regulations	12	160	160	-	160	-	160
		(mg/L)	Agreed value	-	-	15	-	15	-	15
	Chemical oxygen		Actual value	2.6	2.0	Stopped	-	7.4	-	6.0
Water quality	demand	Pollution load amount	Water pollution laws and regulations		8.4	55	-	-	-	-
related		(kg/d)	Agreed value		-	14	-	20.8	-	22
			Actual value	18	3.5	Stopped	-	0.3	-	6.28
	Amount of	Highest concentration	Water pollution laws and regulations	-	0	90	600 ^{≋2}	200	-	200
	suspended solids	(mg/L)	Agreed value		-	20	-	20	-	15
			Actual value	<	5	Stopped	<5	2	-	3
	Amount of inclusion of	Highest concentration	Water pollution laws and regulations	:	2	3	4 ^{≋2}	5	-	5
	normal hexane extractable	(mg/L)	Agreed value	-	-	1	-	1	-	1
	substances		Actual value	<	1	Stopped	<1.0	<0.5	-	<1.0

X1 Regulation in rules for the execution of ordinances to protect and nurture the environment of Kyoto Prefecture

2 Regulated value of Osaka City sewer ordinance execution rules

Environmental protection records at thermal power plants ⁽²⁾

		Item		Gobo Power Station	Himeji No.1 Power Station 5,6U & GT1,2U	Himeji No.2 Power Station	Aioi Power Station	Ako Power Station
	Main fuel		Heavy/crude oil	LNG	LNG	LNG	Heavy/crude oil	
		Amount emitted hourly	Air Pollution Control Law (total amount regulation)	6,510 ^{**3}	129	582	2,757 ^{**3}	2,158 ^{**3}
		(m3N/h)	Agreed value	184	-	-	165	180
			Actual value	68	-	-	4	57
	Sulfur oxide	Amount emitted daily	Agreed value	-	-	-	-	-
		(t/d)	Actual value	-	-	-	-	-
		Amount emitted annually	Agreed value	970×10 ³ m ³ N	-	-	885×10 ³ m ³ N	650×10 ³ m ³ N
		(t/y)	Actual value	3.12×10 ³ m ³ N	-	-	0.306×10 ³ m ³ N	7.3×10 ³ m ³ N
Air quality related		Amount emitted hourly	Air Pollution Control Law (total amount regulation)	-	-	-	-	-
related		(m3N/h)	Agreed value	110	123.5	463	85	94
			Actual value	47	52.0	95	43	69
	Nitrogen oxide	Amount emitted daily	Agreed value	-	-	-	-	-
		(t/d)	Actual value	-	-	-	-	-
		Amount emitted annually (t/y)	Agreed value	560×10 ³ m ³ N	701×10 ³ m ³ N	2,263×10 ³ m ³ N	390×10 ³ m ³ N	340×10 ³ m ³ N
			Actual value	3.184×10 ³ m ³ N	168.797×10 ³ m ³ N	396×103m3N	39.6×103m3N	14.4×103m3N
		Emission concentration (g/m3N)	Air Pollution Control Law	0.07	0.05	0.05	0.07	0.05
	Soot particles		Agreed value	0.01	-	-	0.015	0.015
			Actual value	0.002	-	0	0	0.002
	Hydrogen id	Water pollution laws and regulations		-	5.0~9.0	5.0~9.0	5.0~9.0	5.0~9.0
			Agreed value	5.8~8.6	5.8~8.6	5.8~8.6	5.8~8.6	5.8~8.6
			Actual value	6.5~8.0	7.1~7.9	7.0~7.6	6.8~7.3	6.4~7.3
		Highest concentration	Water pollution laws and regulations	-	70	70	70	70
		(mg/L)	Agreed value	10	15	15	15	15
	Chemical oxygen		Actual value	5.7	2.8	3.8	3	2.8
Water quality	demand	Pollution load amount	Water pollution laws and regulations	-	38.8	173.9	67.8	85.5
related		(kg/d)	Agreed value	36.8	15.2	35	18	22.4
			Actual value	4.7	3.2	10.2	2.98	2.4
	Amount of	Highest concentration	Water pollution laws and regulations	_	90	90	90	90
	suspended solids	(mg/L)	Agreed value	20	20	20	20	20
	30103		Actual value	3.5	2	3	2	<1
	Amount of inclusion of	Highest concentration	Water pollution laws and regulations	-	5	5	5	5
	normal hexane extractable	(mg/L)	Agreed value	1	1	1	1	1
	substances		Actual value	0.1	0.1	0.2	0.1	<0.5

※3 Regulated K value

Kansai Electric Power Group Environmental Action Policy

Based on our Kansai Electric Power Group CSR Action Charter, as an energy business that has a deep connection to the environment, we are formulating the Kansai Electric Power Group Environmental Action Policy as the environmental management policy to be pursued by our group over the medium and long terms. We are realizing this policy through deliberations by our Environmental Board chaired by our Executive Officer in charge of environmental affairs.

As issues that should be considered in the conduct of our business activities, the Kansai Electric Power Group Environmental Action Policy expresses four main focuses that should be followed in our efforts, including "initiatives contributing to the realization of a low-carbon society."

Initiatives contributing to the realization of a low-carbon society	 Lowering electric power's carbon intensity Technological developments for constructing the Smart Grid Contributing to energy conservation, cost reductions and CO₂ emissions reductions for customers and society Overseas activities Technical development efforts Value chain efforts Efforts to reduce other greenhouse gases in addition to CO₂
Initiatives contributing to the realization of a recycling-oriented society	 Promotion of proactive 3R efforts aimed at zero emissions Promoting safe, reliable, and complete disposal of PCB wastes Promoting green procurement
Promotion of environmental protection in local communities	 Measures to prevent air and water pollution, etc. Efforts to strictly manage and reduce toxic chemicals Considering the preservation of biodiversity
Promoting environmental management and environmental communication	 Continuous improvement using environmental management systems based on ISO 14001 systems and strict adherence to laws and regulations Active advancement of environmental awareness raising activities with local communities and customers and disclosure of environmental information

Eco Action (FY 2019 published version)

Kansai Electric Power Group Eco Actions (results in fiscal 2019 and targets for fiscal 2020) Initiatives contributing to the realization of a low-carbon society

Item	FY2	019	FY2020
nem	Targets	Results	Targets
Advancing efforts to control CO2 emissions	 Keep the top spot for the amount of CO2-free power generation in Japan Halve CO2 emissions associated with power generation in Japan in FY2030 (compared to FY2013) About 0.37 kg-CO2/kWh*¹ for the entire electric power business by FY2030 	 We kept the top spot for the amount of CO2-free power generation in Japan (based on surveys and comparisons made in the electric power statistics) Reduction of about 40% from fiscal 2013 levels of CO2 emissions associated with power generation in Japan (FY2019 results: About 28.5 million t-CO2) [The Electric Power Council for a Low Carbon Society (ELCS): FY2018] 0.463-kg-CO2/kWh^{*1} ([Our Company: FY2019] 0.318-kg-CO2/kWh^{*1,2}) 	 Keep the top spot for the amount of CO2-free power generation in Japan Halve CO2 emissions associated with power generation in Japan in FY2030 (compared to FY2013)
Continuing safe and stable operation of nuclear power plants ^{*3}	 Advance efforts to operate nuclear power plants that make safety the top priority 	 We continued the safe and stable operations at running plants We implemented safety improvement measures that conform to new regulatory requirements and voluntary efforts for various other safety measures. 	Operation of nuclear power plants that make safety the top priority
Further development and utilization of renewable energy			Continued
Maintaining and improving the thermal efficiency of thermal power plants* ³	*Benchmark indicators*4 (A: 1.00, B: 44.3%)	• A-benchmark indicator: 1.03, B-benchmark indicator: 47.9%	Continued
Reducing transmission and distribution loss* ⁵	•Reduce from current level	* 4.8%	To be maintained and reduced
Promoting use of innovative forms of energy among customers and communities	•Contribute to making energy use by customers and society more sophisticated	 We worked to expand use of devices and services that contribute to more sophisticated utilization of energy by customers and society. Smart meters deployed: 0.94 million/year (Cumulative total: 11.53 million), progress rate: about 88% 	Continued
Limiting SF ₆ emissions*6 (gas recovery rate upon inspection/removal of equipment)	•97% (upon inspection) •99% (upon removal)	•99.0% (upon inspection) •99.4% (upon removal)	Continued

*1 Amount of CO₂ emissions per unit of electricity use (sales)

*2 This value is provisional. Based on the Law Concerning the Promotion of the Measures to Cope with Global Warming and other factors, the actual value of the CO2 emission factor will be officially announced by the country.

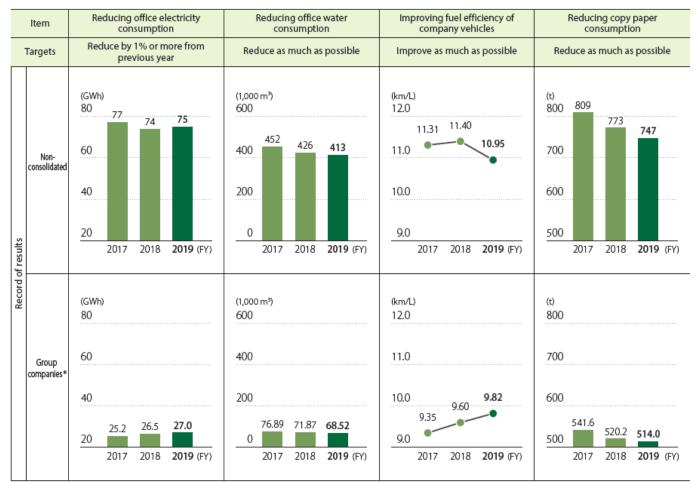
*3 Targets and results apply only to our Company.

*4 Indicators based on the benchmark system of the Law Concerning the Rational Use of Energy *5 Targets apply only to Kansai Transmission and Distribution, Inc.

*6 On the calendar year basis

Initiatives contributing to the realization of a recycling-oriented society (non-consolidated)

ltem	FY2	FY2020	
	Targets	Results	Targets
Maintaining industrial waste recycling rate	• 99.5%	• 99.8%	Continued
Proper processing of PCB wastes	 Proceed with certainty to achieve processing before the legal deadline 	Amount of high-level PCB processed (Cumulative total): 5,365*	Continued


*Number of high-voltage transformers, condensers and other electrical equipment that were subcontracted to the Japan Environmental Storage & Safety Corporation (JESCO).

Eco Action (FY2019 published version)

Promotion of environmental protection in local communities (non-consolidated)

ltem		FY2	FY2020	
	Targets		Results	Targets
Maintaining sulfur oxide (SOx) and nitrogen oxide (NOx) emission factors	SOx Emission factors: maintain the lowest levels in the world		Overall: 0.021 g/kWh Thermal: 0.036 g/kWh All agreed values were met.	Continued
	Emissions: strictly adhere to agreed values at each power plant	Overall: 0.043 g/kWh Thermal: 0.074 g/kWh All agreed values were met.	Continued	
Conservation of biodiversity	• Consideration of biodiversity through business activities		 We studied the status of vegetation around the Kurobe Dam through literature and field surveys. We examined biodiversity conservation further based on survey results. 	Continued

Office energy and resource conservation activities (group-wide items)

* Calculated for 38 consolidated subsidiaries (excluding Kansai Transmission and Distribution, Inc.) for which three-year data (FY2017–2019) is available.

Eco Action results (FY2015~FY2019)

· · · · · · · · · · · · · · · · · · ·						
Item		2015	2016	2017	2018	2019
	CO2 emissions ^{%1}	42.9 million t-CO2	40.4 million t-CO2	34.2 million t-CO2	30.4 million t-CO2	28.5 million t-CO2
Advancing efforts to control CO ₂ emissions	CO2 emission factor (end use) (after adjustment) (by amount of electric power sold) ^{%2,%3}	0.496kg CO ₂ /kWh	0.493kg CO ₂ /kWh	0.418kg CO ₂ /kWh	0.33kg CO ₂ /kWh	0.318kg CO ₂ /kWh
	Accumulated installed capacity ^{%4}					about 4.43 million kW
Developing and utilizing renewable energy sources further	Renewable energy development ^{**5}	2 locations 30,220kW	2 locations 7,580kW	1 location 500kW	3 locations 3,890kW	
	Renewable energy purchased ^{*5}	4.00 billion kWh	4.83billion kWh	5.85 billion kWh	5.72 billion kWh	
Cartaila tina ta tha na liastina af lau	Promotion of hydroelectric power construction ^{*5}	-	-	2	2	
Contributing to the realization of low carbon societies through overseas power generation businesses	Participation in renewable energy investment projects ^{*5}	-	-	1	2	
generation businesses	Developing country support efforts under GSEP framework ^{*5}	-	-	2	1	
Maintaining and improving the thermal efficiency of thermal power plants(lower	Benchmark indicators ^{※6}					A:1.03, B:47.9%
heating value base)	Thermal efficiency ^{%6%7}	46.6%	47.6%	48.3%	49.0%	
Reducing transmission and distribution loss	transmission and distribution loss rate ^{%8}	5.2%	5.5%	4.4%	5.1%	4.8%
Promoting use of innovative forms of energy among customers and communities	Smart meters deployed	1.6million/year (cumulative 5.55 million)	1.95million/year (cumulative 7.5 million)	1.82million/year (cumulative 9.32 million) progress rate : about 72%	1.26million/year (cumulative 10.58 million) progress rate : about 81%	0.94million/year (cumulative 11.53 million) progress rate : about 88%
Limiting SF ₆ emissions(calender year	Upon inspection	99.1%	99.3%	99.6%	98.5%	99.0%
basis)(gas recovery rate upon inspection/remival of equipment)	Upon removal	99.1%	99.6%	99.3%	99.3%	99.4%
Maintaining industrial waste recycling rate	Industrial waste recycling rate $^{\otimes 9}$	99.9%	99.7%	99.9%	99.8%	99.8%
Proper processing of PCB wastes(before the legal dead line)	Amount of high-concentration PCB processed(cumulative total) ^{*10}	4,763	4,834	5,073	5,241	5,365
	SOx emissions factor (for KEPCO- generated power) ^{$\times 11$}	0.046g/kWh	0.037g/kWh	0.028g/kWh	0.022g/kWh	0.021g/kWh
Maintaining sulfer oxide(SOx)emission factors	SOx emissions factor (by volume of power from thermal power generation)(for KEPCO- generated power) ^{%12}	0.055g/kWh	0.043g/kWh	0.039g/kWh	0.037g/kWh	0.036g/kWh
	NOx emissions factor (for KEPCO- generated power) ^{%13}	0.072g/kWh	0.067g/kWh	0.055g/kWh	0.043g/kWh	0.043g/kWh
Maintaining nitrogen oxide(NOx) emission factors	NOx emissions factor (by volume of power from thermal power generation)(for KEPCO- generated power) ^{×14}	0.085g/kWh	0.077g/kWh	0.077g/kWh	0.074g/kWh	0.074g/kWh

 $\times 1$ CO2 emissions refer to those produced by fuel combustion at the Group's thermal power plants in Japan.

2 CO2 emission factor (energy used) corresponds CO2 emissions per kWh of Kansai Electric Power Company electricity used.

(CO2 emission factor (energy used) (after adjustment) = CO2 emissions (after adjustment) ÷ amount of electric power sold)

※3 The FY2019 figures are provisional. The actual figures of the CO2 emissions coefficient will be officially announced by the government separately

based on the Act on Promotion of Global Warming Countermeasures and other factors.

%4 Shown are the results in FY2019, with targets of Eco Action revised to "achieve 6 million kW of installed capacity by 2030s (2 million kW or more new development in Japan and abroad)" in line with theKansai Electric Power Group Medium-term Management Plan (2019-2021), which was set out in 2019.

%5 Shown are the results in FY2015-2018, because these target removed from Eco Action in 2019.

%6 Shown are the results in FY2019, with targets of Eco Action revised to indicators based on the benchmark system of the Law Concerning the Rational Use of Energy from 2019.

- %7 Net thermal efficiency of thermal power facilities = (amount of power transmitted × quantity of heat per kWh)
- +total amount of input heat(lowest heat value standard)×100

**8 Transmission and distribution loss rates = (area transmission-end power – area consumption power (end use) – substation power) / area transmission-end power × 100 [%] "Area" in this case refers to the entire supply area of Kansai Transmission and Distribution, Inc.

※9 Industrial waste recycling rate = [(Industrial waste and other emissions - Amount of landfill disposal)÷(Industrial waste and other emissions)]×100

*10 nunber of high-voltage transformsers, condensers and other electrical equipment that were subcontracted to the Japan Environmental Storage & Safety Corporation (JESCO)

*11 SOx emissions factor (for KEPCO-generated power) = SOx emissions amount ÷ power generated amount (for KEPCO-generated power)

#12 SOx emissions factor (by volume of power from thermal power generation (for KEPCO-generated power)) =

SOx emissions amount + volume of power from thermal power generation (for KEPCO-generated power)

%13 NOx emissions factor (for KEPCO-generated power) = NOx emissions amount +power generated amount (for KEPCO-generated power)

*14 NOx emissions factor (by volume of power from thermal power generation (for KEPCO-generated power)) =

NOx emissions amount÷volume of power from thermal power generation (for KEPCO-generated power)

Low carbon target

We announced the following environmental targets in the Kansai Electric Power Group Medium-term Management Plan (2019-2021).

Low carbon target in the Kansai Electric Power Group Medium Management Plan (2019-2021)

• We will seek to achieve 600 million kW of renewable installed capacity by 2030s, of which more than 200 million kW will be newly developed in Japan and abroad.

• We will keep the top spot for the amount of CO₂-free power generation in Japan, and halve CO₂ emissions associated with power generation in Japan in FY2030 (compared to in FY2013).

Biodiversity policy (1)

Policies related to business activities that consider the conservation of biodiversity

The Kansai Electric Power Group is pursuing sustainable business activities based on the "Biodiversity Action Guidelines by the Japanese Electric Utility Industry." Holding up "business activities that consider preservation of biodiversity" as an Environmental Action Policy, we will push this initiative forward.

In the electric power business, we are committed to using the blessings of nature in a sustainable manner while minimizing the impact on biodiversity.

Biodiversity Action Guidelines by the Japanese Electric Utility Industry (Revised June 2020)

In view of the "integration of business activities and environmental measures" encompassing a wide range of environmental activities, or so-called "environmentally integrated management" that has been required recently, we have revised the "Biodiversity Action Guidelines by the Japanese Electric Utility Industry." Based on these Action Guidelines, we will continue to strive for sustainable business activities while appreciating the

Based on these Action Guidelines, we will continue to strive for sustainable business activities while appreciating the blessings of nature.

Code of Conduct: As a member of the international and local communities, not just as an electric power company, we keep in mind that biodiversity is an important foundation of a sustainable society and realizing such a society is our responsibility. We will actively promote the following business activities that bring benefits to biodiversity, thereby realizing a sustainable society.

I. Promoting environmentally integrated management that contributes to biodiversity

[1] When supplying electricity, carry out corporate management while recognizing the effects of business activities on achieving various goals related to SDGs with due consideration to biodiversity.

[2] In order to reduce greenhouse gas emissions in the electric power industry as a whole, make utmost efforts to use nuclear power generation with the basic premise of ensuring safety, increase the use of renewable energies, further improve efficiency and perform appropriate maintenance of thermal power generation, and provide energy-saving and CO2-saving services that contribute to a low-carbon society.

[3] Continue to engage in 3R (Reduce, Reuse, Recycle) activities, such as effective use of resources and reduction of final waste disposal, to create a recycling-based society and reduce environmental load.

[4] Regarding biodiversity efforts, deliver easy-to-understand information and dialogue appropriately to a broad base of stakeholders.

II. Steadily engaging in actions that contribute to biodiversity

[5] When conducting business activities, properly assess, analyze and evaluate the impact on biodiversity, and strive for conservation and sustainable use.

[6] Promote technologies and R&D that contribute to the conservation and sustainable use of biodiversity, and seek to disseminate them.

[7] Work to conserve biodiversity by voluntarily and proactively engaging in activities that lead to the creation of social value, such as forest conservation and environmental education, while cooperating and collaborating with relevant local organizations and customers. At the same time, contribute to achieving SDGs.

[8] Encourage employees to enhance their awareness of biodiversity by participating in environmental education and environmental conservation activities inside and outside the company.

[9] Provide environmental education activities to customers and the next generation, and participate in and cooperate with educational activities performed in the community to widely spread awareness of biodiversity.

Biodiversity policy ⁽²⁾

Efforts for Biodiversity Action Guidelines by the Japanese Electric Utility Industry II-(5) In the Kurobe Dam area, we have been working on the protection of native species and so on from the viewpoint of nature preservation. In fiscal 2019, we analyzed the vegetation status around the Kurobe Dam again through literature references and field surveys.

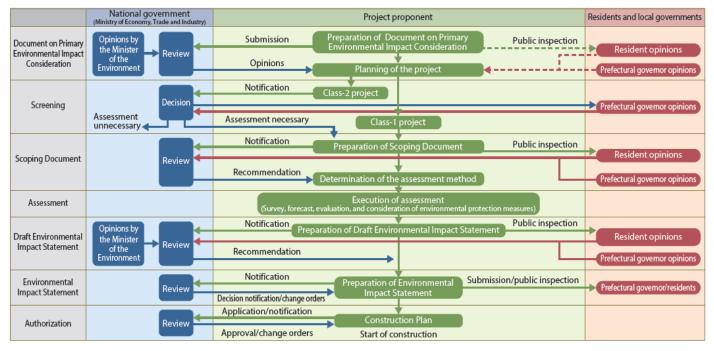
Based on the results, we will go on with further study on biodiversity conservation activities.

Protecting native species around Kurobe Dam

Electric buses run along the Tateyama Kurobe Alpine Route that connects Nagano Prefecture and Toyama Prefecture. Along with not emitting exhaust gases, these vehicles rarely startle animals with their sound because they run extremely quietly.

Kurobe Dam, which is situated in a national park, receives one million visitors annually. At Ogizawa Station, which is the entrance to the Nagano Prefecture side, the seeds of plants that do not naturally grow in Kurobe sometimes get brought over on the soles of the shoes of tourists. Thus, seed removal mats have been placed at the station ticket gates to prevent the influx of non-native species. The removed seeds are collected with a vacuum cleaner and incinerated.

Seed-removing floor mat


Biodiversity policy ③

Examples of specific efforts related to Biodiversity Action Guidelines by the Japanese Electric Utility Industry II-5

Execution of environmental impact assessment

An environmental impact assessment system estimates and evaluates impacts on the environment of business activities and investigates necessary countermeasures before the execution of large-scale development projects. In Japan, the system based on the Environmental Impact Assessment Law stipulates subject business survey items, procedure protocols, and other requirements.

In suitably implementing environmental impact assessment for power plant construction (including new and expansion) in the electric power business, along with utilizing the extensive knowledge that we had accumulated before the establishment of this law, we are, for example, listening to the opinions and recommendations of local residents, regional organizations and the national government. Furthermore, through environmental protection measures based on the opinions of experts and others, we are making efforts to minimize impacts on the natural environment and biodiversity as well as restore natural environments.

Biodiversity policy ④

Examples of specific efforts related to Biodiversity Action Guidelines by the Japanese Electric Utility Industry II - I

Natural forest creation

In order to make forests that are similar to nature at power plants in short amounts of time, we are trying to create environments that protect the original biodiversity of the region by selecting cultivated tree saplings that are suited to the region, and planting different species densely in close proximity.

Moreover, in order to maintain natural forests, as we look to the guidance of experts, we are undertaking continuous efforts to preserve biodiversity, including measures to further diversify species and eliminate invasive species.

Protecting oriental white storks

In Toyooka City, Hyogo Prefecture, released oriental white storks, which are designated a Special Natural Treasure in Japan, sometimes make their nests on utility poles and steel towers. Not only are there concerns about accidents, but there are also fears that storks could be electrocuted. For these reasons, we patrol carefully, removing nests as quickly as possible and conducting measures to discourage them from coming near utility poles in cooperation with the municipality. In these ways, we are both protecting the storks and maintaining the safety and stability of the power supply.

Power lines with colored markers

Storks nesting on top of a utility pole

Oriental white storks being raised