「大飯発電所3,4号機 新規制基準適合性確認結果について(報告)」(平成25年4月)に係る追加報告について

平成25年6月 関西電力株式会社 平成 25 年 3 月 19 日に開催された第 33 回原子力規制委員会において、発電用原子炉の新規制施行に向けた基本的な方針について議論され、平成 25 年 7 月の新規制導入時点における稼動中プラントについては、新規制が導入される前に新規制基準をどの程度満たしているかを把握するための確認作業を行うとの方向性が示された。これを受けて、平成 25 年 3 月 25 日、当社は原子力規制庁より、現在運転中であり平成 25 年 9 月まで運転を継続する予定の大飯発電所 3,4 号機に関して、新規制基準を踏まえた実態を報告するよう要請された。上記の要請に基づき、大飯発電所 3,4 号機の新規制基準への適合性について確認し、その結果を取りまとめ、平成 25 年 4 月 18 日に報告した。また、外部火災影響評価結果、火山影響評価結果および重大事故対策における手順書の整備、訓練の実施に関する内容について、平成 25 年 5 月 16 日に追加報告した。

本報告書は、これらの報告に係る追加報告内容についてまとめたものである。

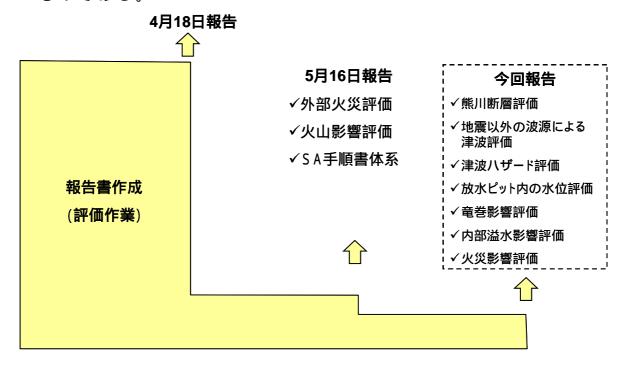


図 今回の報告範囲について


目 次

1	•	熊川断	層に	関す	- る	評	価	に	つ	ιı	T	•	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	3
2		大飯発	電所	3,4	号	機	に	お	け	る	地	震	以	外	の	要	因	に	ょ	る	津	波	に		
		関する	検討	につ) l l	τ		• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	14
3		大飯発	電所	3,4	号	機	に	お	け	る	確	率	論	的	津	波	八	ザ	_	ド	評	価	に		
		関する	検討	につ) l l	τ		• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	41
4		大飯発	電所	3,4	号	機	に	お	け	る	津	波	に	ょ	る	放	水	ピ	ツ	۲	内	の			
		水位評	価に	つし	て			• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	62
5		大飯発	電所	3,4	号	機	に	お	け	る	原	子	力	発	電	所	の	竜	巻	影	響	評	価		
		につい	て					• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	76
6		大飯発	電所	3,4	号	機	に	お	け	る	原	子	力	発	電	所	の	内	部	溢	水	影	響	評	
		価につ	いて					• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •		• •	• •	• •	• •	209
7		大飯発	電所	3,4	号	機	に	お	け	る	原	子	力	発	電	所	の	内	部	火	災	影	響		
		評価に	つい	て				• •	• •		• •		• •	• •	• •	• •	• •					• •		• •	370

1.熊川断層に関する評価について

熊川断層に関する評価

若狭湾周辺の主な断層の分布

熊川断層に関する評価

陸域の地質層序

文献調査結果

地形調査結果及び東端付近の地表地質調査結果

トレンチ調査結果

熊川断層西端に関する調査結果

(反射法地震探査・ボーリング調査結果)

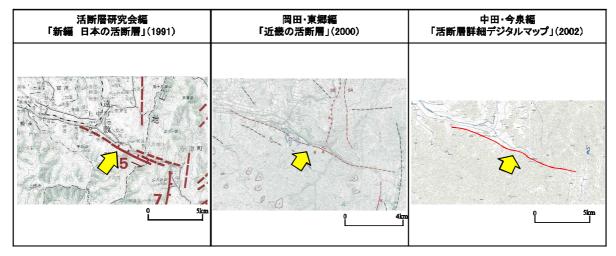
(地表地質調査と高速道路切土法面の確認結果)

(高速道路今富トンネル施工記録の確認結果)

熊川断層西端に関する補足調査結果

(H24年度反射法地震探査結果)

文献調査·地表地質調査


陸域の地質層序

地質年代 a 沖積層, 新期扇状地堆積物及び崖錐堆積物 完新世 t 段丘堆積物(低位段丘堆積物・中位段丘堆積物・高位段丘堆積物)及び古期扇状地堆積物 第四紀 更新世 No 能登野層 Ko 古琵琶湖層群 In 伊根層群 鮮新世 新生代 Qd 石英閃緑岩 A2·A3 青葉山安山岩類 大山安山岩 Ht 北但層群 丹後層 新第三紀 中新世 Ha 北但層群 網野層 Uc 内浦層群 Ho 北但層群 豊岡層 Hy 北但層群 八鹿層 G7 江若花崗岩 G6 宮津花崗岩 G3 蘇洞門花崗岩類 古第三紀 G5 雲谷山花崗岩 R1 音海流紋岩 後期 白亜紀 前 期 丹波帯中・古生層及び古屋層 コンプレックス区分 ジュラ紀 中生代 古屋層 Nb 難波江層群 (荒倉層を含む) S 周山コンブレックス 三畳紀 雲ヶ畑コンプレックス Sd 志高層群 G1 舞鶴花崗岩 灰屋コンプレックス 鶴ヶ岡コンプレックス 下見谷層 夜久野オフィオライト 舞鶴層群 超丹波帯 由良川コンプレックス Ms 砂岩 岩 相 (コンプレックスの記号に 岩相の記号を付記) Sa 頁岩·砂岩 Yg 緑色岩類·頁岩 Hk 氷上層 Sb 緑色岩類·凝灰岩 Yf 珪長岩 Mm 頁岩 Oi 大飯層 Yd 石英閃緑岩 Mg 緑色岩類 Kz 上月層 × 混在岩 ペルム紀 古生代 Yb 変斑れい岩 Ou 大浦層 S砂岩 Yu 超苦鉄質岩類 Os 大島層 チャート 石灰岩 緑色岩類 大江山オフィオライト Oe 超苦鉄質岩類 Yr 変花崗岩 (桑飼花崗岩) (DI ドレライト An 安山岩 De 7'1911 Ry 流紋岩 D岩脈 新生代第四紀更新世~ 新第三紀~古第三紀 Di 閃緑岩 Gp 花崗斑岩

3

5

熊川断層に関する文献調査結果

断層名	長さ	確実度	変位の向き	
5 熊川断層	9km	I	左横ずれ 南側隆起	

断層名	長さ	確実度	変位の向き
6 親川断層	12km	I	左横ずれ

断層名	長さ	分類	変位の向き
熊川斷層帯	12km (図読)	活斷層	左横ずれ 南側隆起

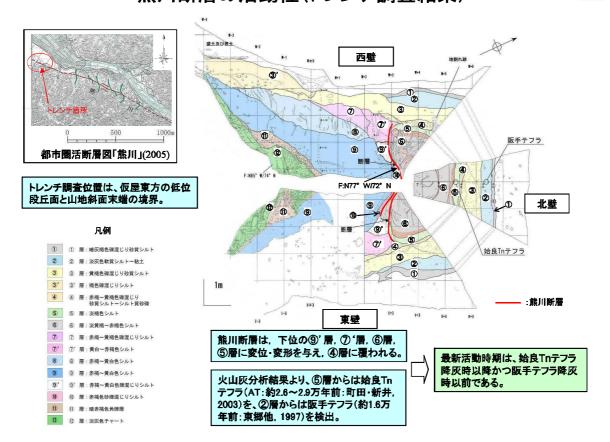
確実度 I : 活断層であることが確実なもの 確実度 II : 活断層であると推定されるもの 確実度II : 活断層の疑いがあるリニアメント

活断層の確実度 確実度 I: 活断層であることが確実なもの 確実度 II: 活断層であると推定されるもの 断層組織地形

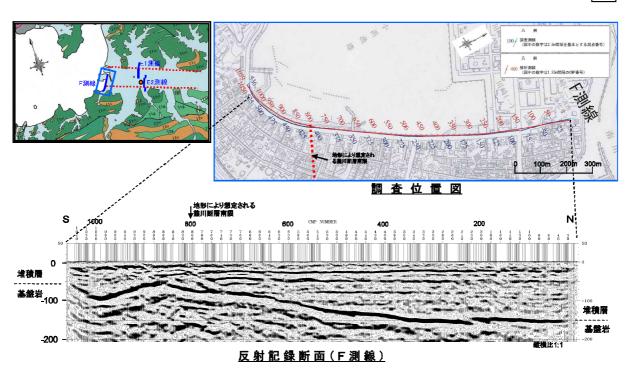
連続性に富むシャープなリニアメント(L) 主なリニアメント

過去に繰り返し動いてきた跡が地形に 現れ、今後も活動を繰り返すと考えら れる斯層 地形的な特徴により活斯層の存在が推 地形のな特徴により活斯層の存在が推

推定活断層 定されるが、現時点では明確には特定 できないもの

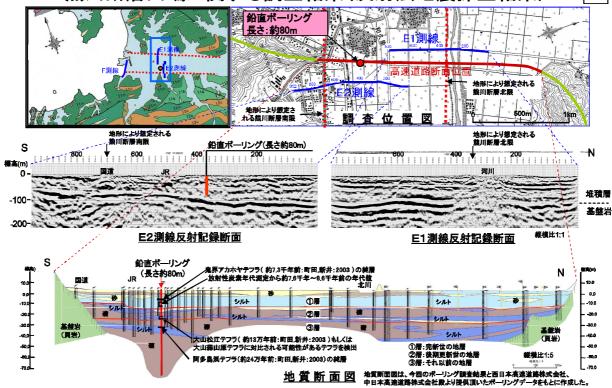

熊川断層に関する地形調査結果及び東端付近の地表地質調査結果

リニアメントの西端は若狭町 低位 II 段丘面に低崖 尾根・谷に左横ず 石田川から東側にリニア 日笠で、以西の沖積層分布 れの系統的な屈曲 メントが判読されない。 が認められる。 域には判読されない。 仮屋 角川 右田川 新期扇状地面 凡例 低位工段丘面 トレンチ調査地点 1000 熊川断層 変動地形・リニアメント分布図 谷の鼠曲 記号の凡例 露頭の位置 ▶ チャートの露頭 泥質混在岩の露頭 層理面の走向, 傾斜 (偏角未補正) 面構造(へき開面など)の走向・傾斜 (偏角未補正) 断層面の走向, 傾斜 (偏角未補正) **国状地面** 角川 リニアメント延長部に健岩露頭が密に分布し、断層は認められない。 岩盤中のへき開や層理面はNNW方 向が卓越。 NNW方向に延びるチャートには変位 が認められない。 石 Ħ 111 熊川断層は、石田川から 東方には延びない。 熊川断層東端ルートマップ ₺

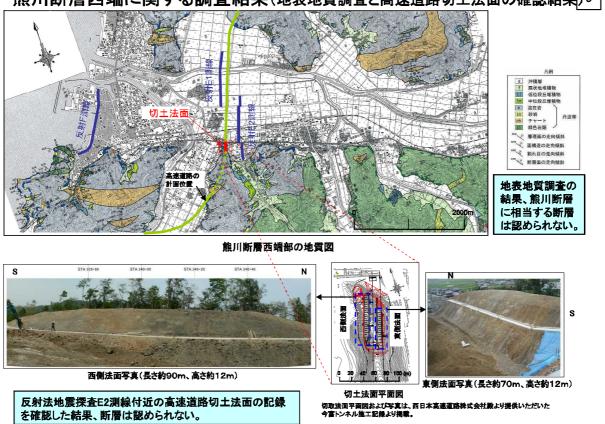

熊川断層の活動性(トレンチ調査結果)

6

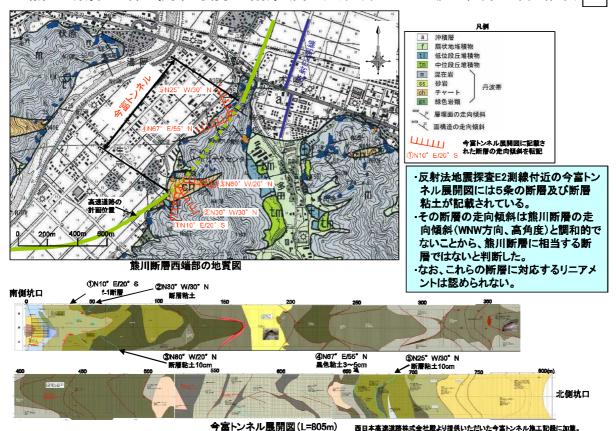
7


熊川断層西端に関する調査結果(反射法地震探査結果)

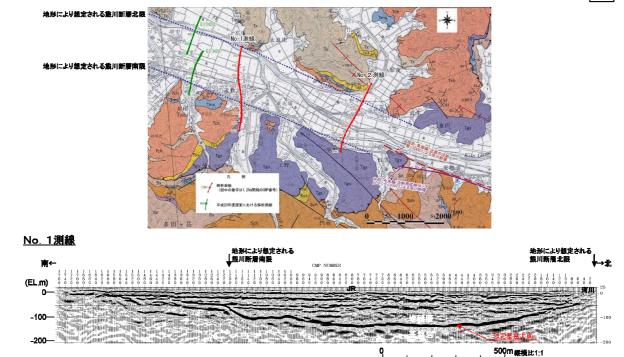
反射法地震探査の結果、F測線において、基盤岩上面(想定)や堆積層中に断層による変位・変形が認められない。


熊川断層西端に関する調査結果(反射法地震探査結果)

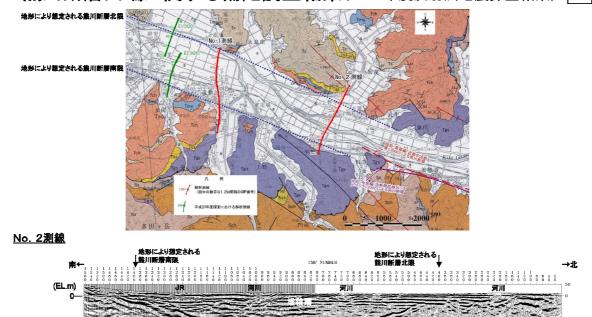
8



反射法地震探査およびボーリング調査の結果、E1、E2測線において、 堆積層に断層による変位・変形は無いと判断した。


熊川断層西端に関する調査結果(地表地質調査と高速道路切土法面の確認結果)9

熊川断層西端に関する調査結果(高速道路今富トンネル施工記録の確認結果) 10



熊川断層西端に関する補足調査結果(H24年度反射法地震探査結果) 11

・既往反射法地震探査測線の東側、約1km離れた小浜市遠敷付近(No. 1測線)において実施した反射法地震探査の結果、基盤岩上面(想定)や堆積層中に断層による変位・変形が認められない。

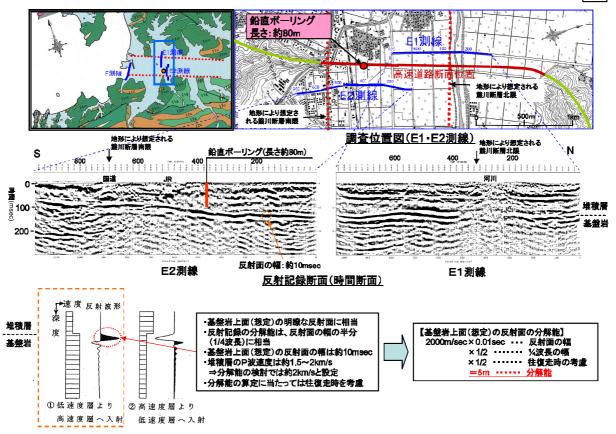
熊川断層西端に関する補足調査結果(H24年度反射法地震探査結果) 12

- ・既往反射法地震探査測線の東側、約4km離れた小浜市平野付近(No. 2測線)において実施した反射法地震探査の結果、 基盤岩上面(想定)や堆積層中に断層による変位・変形が認められない。 ・文献(変動地形学的調査)で示された熊川断層の端部と整合する。
- ・今回の補足調査の結果、従来、小浜市和久里付近としていた熊川断層の西端を小浜市平野付近とし、長さを14kmとする。

13

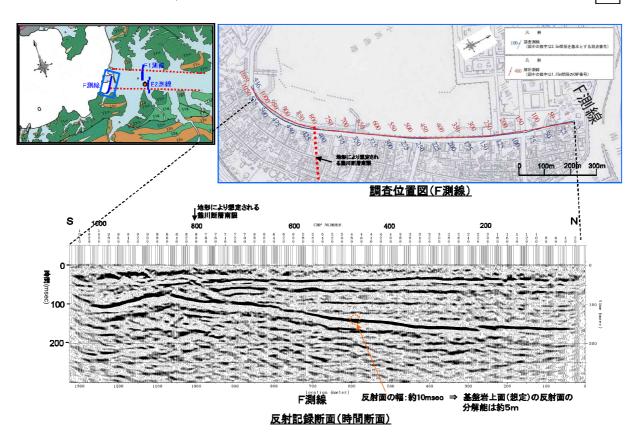
機構比1:1

【参考】反射法地震探査の分解能について

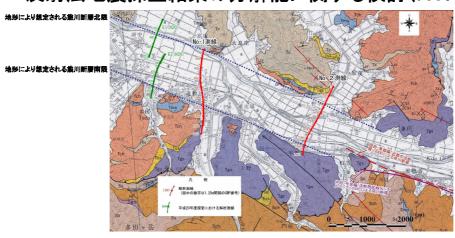

熊川断層反射法地震探査の主な仕様

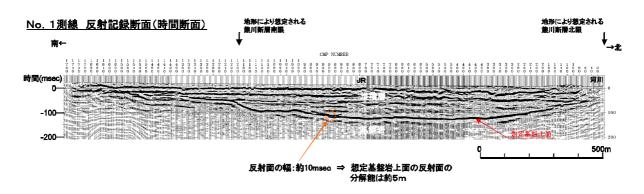
14

15

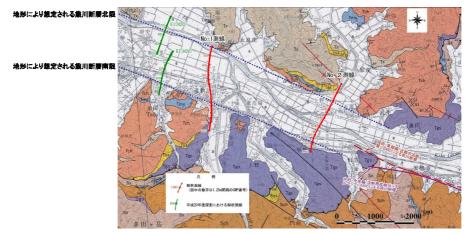

	がない 1時1.	/百 /人 7 1 /	ム地辰ル	<u> トロリコ</u>	<u>ドドエーや'</u>	(
項目			内 容			備考
実施年度		平成20年度		平成2	4年度	
測 線 名	E1	E2	F	No.1	No.2	
波動種別			P波			縱波
震源	油日		MI-200 Ⅱ、㈱地球 重錘落下,重錘重		新製)	E1測線の北川河川敷では鉄 ハンマーを使用
受 震 器		速度型地震 (固有周				
データ収録器		ルテレメトリ―型 A、㈱地球科学網			立型収録器 Geospace製)	24ビットディジタル収録方式
発震点間隔			2,5m			
総発震点数	395	422	500	849	718	
受震点間隔		5.0m				
総受震点数	202	240	263	448	388	
最大受震距離			発震点と受震点間の最大距離			
標準同時収録チャンネル数			61ch			
収録時間			1.5sec			
収録時サンプリングレート		1.0msec (1000Hz	2)	0.5msec	(2000Hz)	
収録時の帯域フィルター		アンチ・エ				
標準水平重合数(CDP重号数)						
垂直重合数(スタック回数)			5~14回			取得データを確認し適宜変更
無本測線 巨かしが測上来早	1,035m	1,263m	1,338m	2,302m	2,003m	知本と中体 (ナ海(4)の 明報
調査測線長および測点番号	2~410	2~484	2~536	2~918	2~802	調査を実施した測線の距離
毎代郷鏡 巨小 しょくいょうご ロ	1,030m	1,188m	1,322m	2,207.5m	1951.25m	解析を実施した測線の距離
解析測線長およびCMP番号	1~825	1~952	1~1059	1~1,767	1~1,562	(CMP間隔の累計)

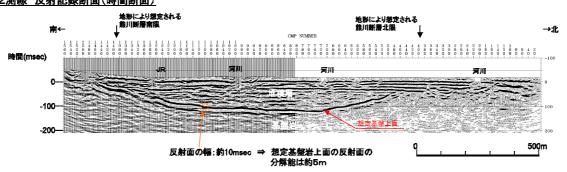
反射法地震探査結果の分解能に関する検討(E1, E2測線)




反射法地震探査結果の分解能に関する検討(F測線)

16


反射法地震探査結果の分解能に関する検討(No. 1測線)



反射法地震探査結果の分解能に関する検討(No. 2測線)

18

No. 2測線 反射記録断面(時間断面)

2 .	大飯発電	፤ 所 3,4	号機にま	分ける地	震以外の)要因に。	よる津波	に関する	検討につ	いて

地震以外の要因による津波に関する検討

既往津波の調査結果(文献調査結果)

- 〇以下の文献調査を実施し、日本海における津波の記録を確認するとともに、地震以外の要因による津波についての記載の有無を確認。
 - ① 羽鳥徳太郎(1984):日本海の歴史津波、月刊地球、Vol.16、No. 9.
 - ② 国立天文台(2009):理科年表 平成21年、丸善.
 - ③ 宇佐美龍夫(2003):「最新版 日本被害地震総覧 [416] -2001」、東京大学出版会.
 - ④ 羽鳥徳太郎(2010):歴史津波からみた若狭湾岸の津波の挙動、歴史地震、第25号、p75-80
 - ⑤ 渡辺偉夫(1998):日本被害津波総覧〔第2版〕、p.165.
 - ⑥ 気象庁(2007): 平成19 年8月 地震-火山月報(防災編)、第1号、pp.41-42.
- 〇既往津波に関しては、地震によるもの、地震以外の要因によるものを含め、若狭湾周辺に大きな被害をもたらした津波はない。
- 〇火山活動に伴う山体崩壊が引き起こした津波としては、1741年渡島沖地震の記載があるが、これ以外に、海底・陸上の地すべりや、海底火山活動、その他を成因とした津波の記録は認められない。

1調查目的

若狭湾における津波の痕跡に関するデータ拡充を図ることを目的として、関西電力(株)、日本原子力発電(株)、(独)日本原子力研究開発機構(JAEA)の3社共同で、津波堆積物調査を実施

2.調査位置

- 三方五湖周辺(久々子湖5箇所、中山湿地1箇所、菅湖1箇所)
- 久々子湖東方陸域(早瀬、久々子・松原、坂尻の各地区8箇所)
- 猪ヶ池(6箇所)

3.調査·評価方法

- ボーリングにより、完新世(約1万年前以降)の地層を カバーするよう試料採取を実施
- X線CTスキャンを併用した肉眼観察、微化石層分析等を実施し、海から運ばれた痕跡(砂層など)を調査し、津波堆積物の有無を評価

〇各発電所の安全性に影響を与えるような津波の痕跡 は認められなかった。(H24.12.18規制庁へ報告済)

○津波堆積物調査結果からも、各発電所の安全性に 影響を与えるような地震以外の要因による津波の痕 跡は認められない。

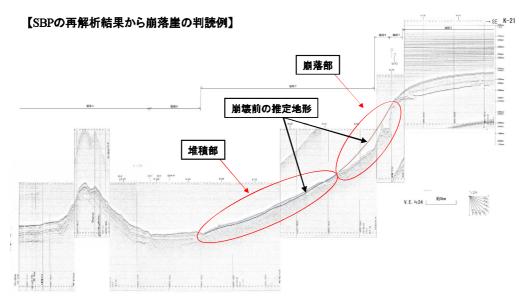
評価対象となる地震以外の要因

〇文献調査結果および津波堆積物調査結果から、既往津波のうち、地震以外の要因によるものに関しては、大飯発電所3・4号機の安全性に影響を与える可能性のあるものは認められない。

- 〇一方、新規制基準*によれば、「陸上及び海底での地すべり、斜面崩壊、火山現象 (噴火、山体崩壊、カルデラ陥没等)」による津波発生要因について考慮すべきとされ ている。このため、
 - ① 海底地すべり
 - ② 陸上の斜面崩壊(地すべり)
 - ③ 火山現象による山体崩壊

による津波について評価を行った。

※「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準を定める規則」第5条2の一


3

海底地すべりによる津波の評価

検討方針

- 5
- 〇日本海において、若狭湾沿岸に最も近い海底地すべり地形群(徳山他2001^{※)}である隠岐トラフを対象に、海底地すべり地形の位置、規模に関する情報を得るため、文献や海上音波探査記録の再解析結果から作成した海底地すべり跡の位置図及び海底の層相区分図を作成。(p6-8)
- 〇作成した海底地すべり跡の位置図及び海底の層相区分図から、それぞれの海底地すべり 地形の規模を算定、最も大きなものを抽出し、崩壊前の地形を推定。(p9-11)
- 〇抽出された海底地すべり地形から、初期水位形状を予測するため、複数の方法(Wattsらによる予測式とKinematicモデル)を検討。(p12-15)
- 〇抽出された海底地すべり地形から、上記2手法に必要なパラメータを決定し、それぞれ津波 伝播計算を実施。(p16-18)
 - ※ 徳山英一、本座学一、木村政昭、倉本真一、芦寿一郎、岡村行信、荒戸裕之、伊藤康人、徐垣、日野亮太、野原壯、阿部寛信、坂井眞一、 向山建二郎、「日本海周辺海域中新世最末期以降の構造発達史」付図、海洋調査技術、13(1)、p26-53、March 2001

- 〇石川県沖から鳥取県沖にかけて旧地質調査所(現:独立行政法人産業技術総合研究所 地質調査 総合センター)が作成した海底地すべり地形位置図および層相区分図(1/20万)に、海底地すべり地 形と、海底の層相区分図を追加した。
- 〇海底地すべりの判読にあたっては、山本(1991)*による手法に準じて、海上音波探査記録(3.5kHzサ ブボトムプロファイラー:SBP)の再解析結果から、崩落崖(海底地すべり地形)を判読した。

- ※1 山本博文(1991)「福井沖大陸斜面の海底地すべり」、地質調査所月報、第42巻 第5号、p221-232 ※2 池原研・佐藤幹夫・山本博文(1990a)高分解能音波探査記録からみた隠岐トラフの堆積作用、地質学雑誌、96巻、p.37-49、(図1-3)

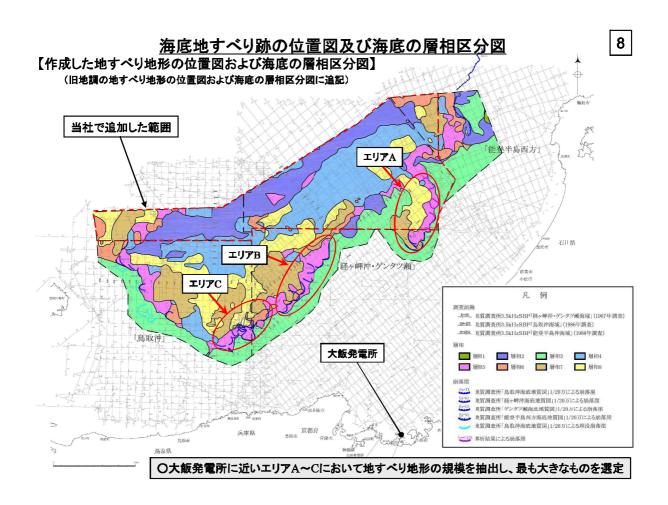
層相区分図の作成

7

【層相の凡例】 (池原他(1990)※1のパターン区分図に追記)

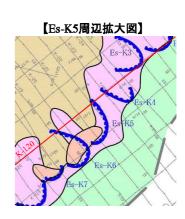
Facies 2 STRATIFIED -thick Facies 8

【層相の区分詳細および特徴】 (池原他(1990)※1から抜粋)


Table 1. Classification and characteristics of eight acoustic facies.

★ See text for description.

FACIES	ACOUSTIC CHARACTERS (combination of sea floor and internal reflector pattern*)	SEDIMENTS	INTERPRETATION	DISTRIBUTION
1 DISTINCT -single & rough	Strong bottom return, no or very poor internal return, rough bottom. (A&III)	Gravelly, rocky	Gravelly or rocky bottom	Oki Ridge N of Dogo
2 DISTINCT -single & smooth	Strong bottom return, no or very poor internal return, smooth bottom. (B&III)	Sandy	Sandy bottom	Oki Ridge Wakasa Sea Knoll Chair
3 STRATIFIED -thick-bedded	Internal reflectors continuous and underformed, stratified, smooth bottom. (B&I)	Muddy (clayey silt- silty clay) massive	Muddy bottom -hemipelagic	Marginal terrace
4 STRATIFIED -thin-bedded	Internal reflectors continuous and undeformed, finely stratified, smooth bottom. (B&I)	Muddy tephra and/or sand layers interbedded	Muddy bottom -hemipelagic, (turbidite)	Central part of SW Trougl most of NE Trough
6 STRATIFIED -blocky	Internal reflectors essentially continuous and undeformed. stratified, basal shear surface reflectors, smooth bottom, stepped topography. (B&I)	Muddy massive	Muddy bottom -slide, (hemipelagic)	Edge of marginal terrace
6 HYPERBOLIC -large	Sea floor reflectors largely hyperbolic or irregular and prolonged, internal reflectors poorly observed. (D&III)	Muddy massive	Muddy bottom -slump	Lower part of slope
7 HYPERBOLIC -small	Sea floor and/or internal reflectors hyperholic or irregular and prolonged, mounded or lens-shaped, blunt distal termination. (C&I,II)	Muddy occurrence of mud clasts	Muddy bottom -debris flow	SW Trough
8 TRANSPARENT	No or very poor internal reflectors, lens or mounded-shaped or layered. (B&II)	Muddy occurence of mud clasts massive	Muddy bottom -debris flow, hemipelagic	SW Trough


海上音波探査記録の再解析記録から層相1~8のパターンに分類し、層相区分図を作成

※ 池原研・佐藤幹夫・山本博文(1990a)高分解能音波探査記録からみた隠岐トラフの堆積作用. 地質学雑誌, 96巻, p.37-49

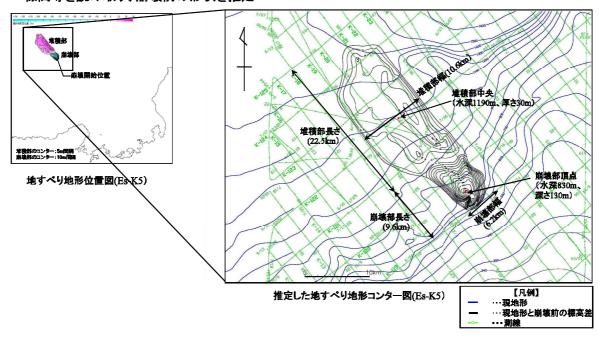
評価対象となる地すべり地形の抽出

○ 各測線から地すべり地形の長さと厚さを図読し、規模(断面積)の最も大きなものを算出 (複数の測線で計測されたものは、規模の大きな方を選定)

9

評価対象となる地すべり地形の抽出

【地すべり地形の面積概略算出結果】(上位20個)

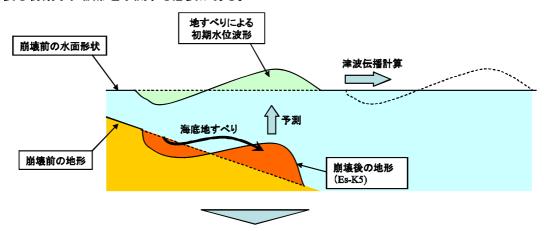

地すべり地形	測線	地すべり長さ(m)	地すべり厚さ(m)	地すべり長さ×厚さ(m²)	規模の順位
Es-K5	K-120	7,135	128	913,324	1
Es-T2	GA-23	8,592	97	833,402	2
Es-T8	GA-22	4,374	150	656,141	3
Es-K7	K-119	3,618	160	578,850	4
Es-T13	GA-20	4,966	116	576,038	5
Es-K6	K-120	5,420	103	558,225	6
Es-T14	GA-15	8,970	61	547,200	7
Es-K8	K-119	6,557	76	498,312	8
Es-K4	K-120	4,418	81	357,855	9
Es-K3	K-121	7,596	45	341,839	10
Es-T6	GA-21	5,343	62	331,267	11
Es-T17	GA-11	1,979	158	312,678	12
Es-K2	K-120	4,462	67	298,932	13
Es-T15	GA-13	8,326	33	274,765	14
Es-K1	K-121	5,198	52	270,276	15
Es-G3	K-115	6,856	29	198,822	16
Es-G103	K-118	6,172	30	185,161	17
Es-T12	GA-T	6,284	29	182,237	18
Es-G104	K-51	3,584	46	164,876	19
Es-G102	K-119	4,413	36	158,864	20

○ 上記結果から、最大規模の地すべり地形としてEs-K5を選定し、さらに詳細に検討

地すべり地形位置図および

11

〇地すべり地形Es-K5を通る海上音波探査記録の複数の断面図から、崩壊部・堆積部の幅、長さ、 標高等を読み取り、崩壊前の形状を推定



地すべり地形のコンター図から、初期水位波形の算定に必要なパラメータを図読

海底地すべりによる津波評価における解析の流れ

12

○海底地すべりによる津波を評価するには、崩壊前後の海底地すべり地形から、津波の伝播計算に 必要な初期水位波形を予測する必要がある。

- ①実験や海底地すべりの数値解析モデルの再現性を確認しているWatts et al. (2005)**1 による予測式
- ②佐竹・加藤(2002)^{※2}が用いた運動学的海底地すべりモデル(Kinematicモデル)による 予測方法
- の2つの方法を検討
- **1 Watts, P., S.T. Grilli, D.R. Tappin, and G.J. Fryer (2005): Tsunami Generation by Submarine Mass Failure. II: Preditive Equations and Case Studies, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp.298-310.
- ※2 佐竹健治・加藤幸弘、2002、「1741年寛保津波は渡島大島の山体崩壊によって生じた」、月刊海洋/号外 No.28,pp150-160

① Wattsらの方法(初期水位波形の予測1/2)

13

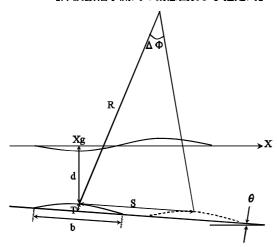
○Watts et al. (2005)※1が提案する初期水位波形の予測式は、次式で表される。

$$\eta(x,y) = -\frac{\eta_{0,3D}}{\eta_{\min}} \operatorname{sech}^{2} \left(\kappa \frac{y - y_{0}}{w + \lambda_{0}} \right) \left(\exp \left\{ -\left(\frac{x - x_{0}}{\lambda_{0}} \right)^{2} \right\} - \kappa' \exp \left\{ -\left(\frac{x - \Delta x - x_{0}}{\lambda_{0}} \right)^{2} \right\} \right)$$

$$\eta_{0,3D} = \eta_{0,2D} \left(\frac{w}{w + \lambda_{0}} \right)$$

ここで、 N_{3D} : 現象が3次元的な場合の最大水位低下、w: 地すべり塊の幅、 N_{\min} : 振幅を除く第1式右辺の最小値、N、N: 形状パラメータ(ただし、N=3としてよい)

〇上式に必要なパラメータ $(w, n_{0,2D}, \lambda_0$ *特性津波波長、 $\Delta x (= \lambda_0/2)$ は、崩壊後の地形から図読、もしくは津波振幅等の予測式から別途算出する。

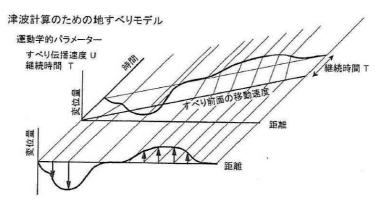

Watts, P., S.T. Grilli, D.R. Tappin, and G.J. Fryer (2005): Tsunami Generation by Submarine Mass Failure. II: Preditive Equations and Case Studies, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp.298-310.
 Grilli, S.T., and P. Watts (2005): Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity

^{※2} Grilli, S.T., and P. Watts (2005): Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analysis, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp.283-297.

○津波振幅等は、Grilli and Watts (2005)*1ならびにWatts et al.(2005)*2 が提案している実験

の再現性に優れた予測式を適用する。

【津波振幅予測式の概念図および推定式】



SMF: Submarine mass failure b:SMF長さ d:初期のSMF最小没水深 T:SMFの厚さ w:SMFの幅 θ:斜面勾配 γ:SMFの比重 Xg:初期水深がdとなる位置の座標 Cm:付加質量係数(=1) Cd: 抗力係数(=0) S:移動距離 Sa:特性距離(=S/2) Cn:底面摩擦係数(= $S_0/(R\cos\theta)$) R:曲率半径(=b2/8T) ΔΦ:回転角(=2S₀/R) a₀:初期加速度(=S₀/t₀²) u_{max}:最大速度(=S₀/t₀) t_o:特性時間 $t_0 = \sqrt{\frac{R}{g}} \sqrt{\frac{\gamma + C_m}{\gamma - 1}}$ λ₀:特性津波波畏(=t_{0, [gd]}) η_{0,2D}: X=Xgにおける最大水位低下量 $\eta_{0,2D} \!\!=\!\! S_0 \left[\frac{0.131}{\sin \theta} \right] \!\! \left[\frac{T}{b} \right] \!\! \left[\frac{b \sin \theta}{d} \right]^{1.25} \!\! \left[\frac{b}{R} \right]^{0.63}$ $\times (\Delta \Phi)^{0.39} (1.47-0.35(\gamma-1))(\gamma-1)$

- *1 Grilli, S.T., and P. Watts (2005): Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analysis, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp 283-297.

 2 Watts, P., S.T. Grilli, D.R. Tappin, and G.J. Fryer (2005): Tsunami Generation by Submarine Mass Failure. II: Preditive Equations and
- Case Studies, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp.298-310.

②運動学的地すべりモデル: Kinematicの方法(初期水位波形の予測)

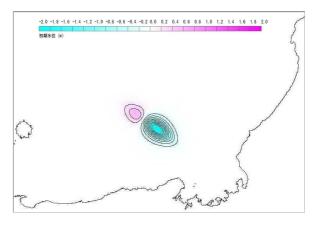
運動学的地すべりモデルの概念図(佐竹・加藤,2002※)

▶地すべり発生箇所における海面変化

- ・海底地形変化は地すべりの伝播速度Uと各地点での継続時間Tで規定される。
- ・地すべりの前面は速度Uで移動する。Uには鉛直成分Uzを与条件とした。
- ·各地点の比高変化は継続時間Tで完了する。
- ・ここで求めた時間刻みあたりの地形変化量が海面水位と海底地形にそのまま反映されるものとして、 その時点での水位と海底地形に上積みする。

▶津波伝播計算

- 非線形長波理論に基づく、通常津波解析に用いられる平面二次元モデルを適用。
- ※ 佐竹健治・加藤幸弘,2002、「1741年寛保津波は渡島大島の山休崩壊によって生じた」、月刊海洋/号外 No.28,pp150-160


採用したパラメータおよび波源振幅の推定値(Wattsらの方法)

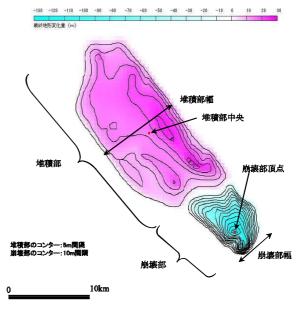
16

項目	値	備考
r(-)	1.4	地質調查所·海洋地質図説明書※1
b (m)	9,600	崩壊部長さ9.6km ^{※2}
T (m)	130	崩壊部の頂点における崩壊深さ ^{※2}
w(m)	6,200	崩壊部幅6.2km ^{※2}
d (m)	700	崩壊部頂点の水深830m-崩壊深さ130m ^{※2}
θ (deg.)	1.73	崩壊部頂点から堆積部中央の距離15.2kmと、崩壊 高さ460m(d=700mと崩壊前における堆積部中央の 水溧1190m-30m=1160mの差)から算出 ⁸²
g (m/s²)	9.8	
Cd	0	
Cm	1	
S	15,200	崩壊部頂点から堆積部頂点の距離15.2km ^{※2}
S ₀	7,600	S/2
Cn	0.086	$=S_0/(R\cos\theta)$
R(m)	88,615	= 6 ² /8T
a ₀ (m ² /s)	0.140	=S ₀ /t ₀ ²
t _o (sec)	233	eq.(20),partI
λ ₀ (m)	19,292	eq.(9),partI
ΔΦ(rad)	0.172	2S ₀ /R
u _{max} (m/s)	32.63	=S ₀ /t ₀
ΔX(m)	9,646	$=\lambda_{o}/2$
к,	0.625	崩壊部の深さ:130m, 堆積部の高さ:30mから、上 昇側のピーク水位が下降側の1/4として算出

波源振幅の推定値						
$\eta_{0,2D}$ (m)	9.79					
$\eta_{0,3D}$ (m)	2.38					

初期水位分布コンタ一図

- ※1 片山葉、佐藤幹夫、池原研「海洋地質図 38 経ケ岬沖表層堆積図説明書 1:200,000」 平成5年 地質調査所 ※2 地すべり地形のコンター図(p11)からの図読による値

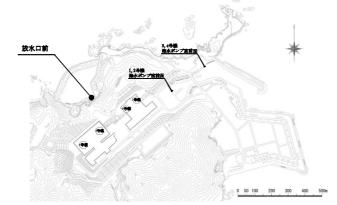

採用したパラメータ(Kinematicモデル)

17

【計算条件】

項目	設定値
設定位置格子サイズ	450 m
鉛直方向破壊伝播速度	1m/s ^{※1}
破壊継続時間	2分*2

【地すべり最終地形変化量】 (Kinematicモデルへの入力コンター)

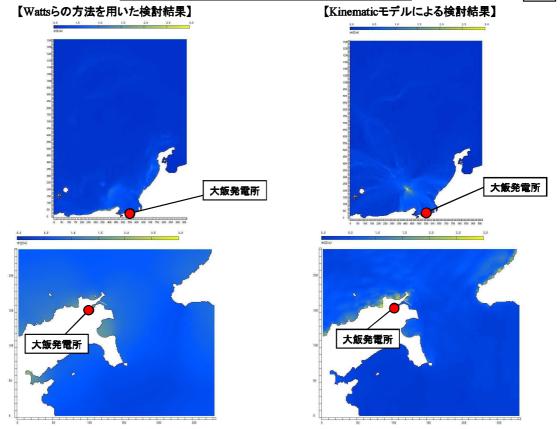


- ※1 Umax=32.628m/s(P16)であることから、Uz=Umax sin θ =32.63 × sin 1.73=0.99m/sとなり1m/sと設定した。 また、干木良雅弘「真相崩壊の実態、予測、対応」京都大学防災研究所、平成24年2月によれば、「深層崩壊は、大規模で 時速100kmをも超えるような急激な土石の移動を伴うものである」との記載がある。
- ※2 崩壊部の深さ130m÷鉛直方向破壊伝播速度1m/s=2分程度から設定している。

18

Wattsらによる方法とKinematicモデルとの結果比較

〇津波伝播計算は、Wattsらによる方法およびKinematicモデルによる初期水位波形をもとに、地震による津波の伝播計算と同じ手法を用いて実施した。


【計算結果】評価地点における最高(最低)水位※1(単位はT.P.(m))

和七二十	放水口前	1,2号機海水:	ポンプ室前面	3,4号機海水ポンプ室前面		
解析手法	最高水位	最高水位	最低水位	最高水位	最低水位	
Wattsらによる方法	1.90	1.91	-1.06	1.74	-0.83	
Kinematicモデル	3.59	1.26	-0.98	1.22	-0.76	

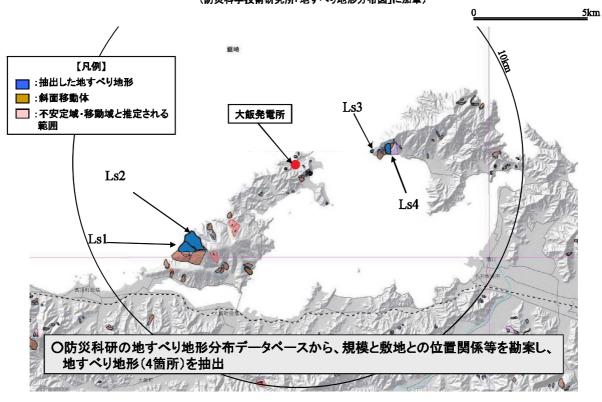
※1 最高水位、最低水位および設計津波水位はいずれも朔望平均満潮位あるいは朔望平均干潮位を含む値

(参考)海底地すべりによる最高水位分布

19

陸上の斜面崩壊(地すべり)による津波の評価

陸上の斜面崩壊(地すべり)による津波に関する検討方針

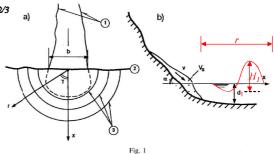

21

- ○防災科研の地すべり地形分布図データベース[※]から、大飯発電所から半径10km程度以内にある地すべり地形を抽出し、それぞれの崩壊土砂量、距離等から、発電所への影響の最も大きなもの上位2つを選定(p22-24)
- 〇地すべりが引き起こす津波評価において、土砂崩壊シミュレーションから津波の初期水位形 状の予測方法に関する解析の流れを検討(p25-31)
- 〇地すべりが引き起こす津波の予測に必要な土砂崩壊シミュレーションを実施するため、2つの地すべり地形について航空写真や現地踏査による詳細な判読を行い、その結果から、崩壊範囲、崩壊土砂量、崩壊土砂を剥ぎ取った地形データを算出。あわせて入力パラメータを検討。(p32-35)
- 〇土砂崩壊シミュレーションにより、地すべりが海面に突入するまでの時刻歴変化を解析。 (p36-37)
- 〇土砂崩壊シミュレーションの結果から得られた崩壊土砂の形状、突入速度等のパラメータをもとに、複数の方法(Watts他による方法と Kinematicモデル)で初期水位形状を予測。(p38-40)
- 〇上記2手法により予測された初期水位波形から、津波伝播計算を実施し、大飯発電所の評価 地点における最も影響の大きい津波を評価(p41-43)

※ 独立行政法人 防災科学技術研究所 http://lsweb1.ess.bosai.go.jp/

23

【発電所周囲10km程度の斜面崩壊箇所】 (防災科学技術研究所「地すべり地形分布図」に加筆)


斜面崩壊地形のスクリーニング

〇抽出した4箇所の地すべり地形について、崩壊部の体積、すべり角、発電所までの距離を算定し、 斜面崩壊の室内実験から導かれた次式(Huber and Hager(1997)*)を適用して、発電所における 津波の全振幅を推定した。

 $\frac{H_I}{d_I} = 2 \cdot 0.88 \sin \alpha \cos^2 \left[\frac{2 \gamma}{3} \right] M^{1/2} \left[\frac{\rho_s}{\rho_w} \right]^{1/4} \left[\frac{r}{d_I} \right]^{-2/3}$

$$M=Vs/bd_{\tau}^2$$

- Reservoir water depth d near the impact site
- · Reservoir topography,
- Distancex, and radius r from the impact site to the location considered, and wave propagation direction γ

Slide layout (a) and section (b) with main parameters of impulse wave Vues schématiques en plan (a) et transversale (b) du glissement, avec désignation des paramètres principaux utilisés dans la description des ondes de translation

Huber and Hager(1997)※に加筆

なお、水深の違いによる波高の上昇を考慮した式として、次式も示している。

$$H_2/H_1 = (d_1/d_2)^{1/4}$$

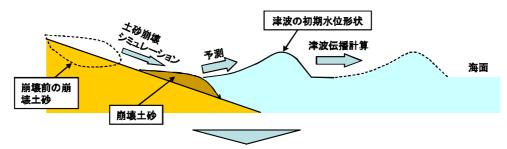
(添え字は、地点1,2での値)

** Huber, A. and W.H. Hager(1997): Forecasting impulse waves in reservoirs. Dix-neuvième Congrès desGrands Barrages C31:993-1005. Florence, Italy. Commission International des Grands Barrages, Paris.

- Huber and Hager(1997)※1の予測式に必要な土量の長さ、幅、すべり傾斜面、進行角、発電所ま での距離は、地すべり地形分布データベースから図読、厚さは高速道路調査会(1985)※2から崩 壊土砂の幅に応じて推定。
- 〇突入位置および発電所前面における水深は、海底地形図※3から図読。

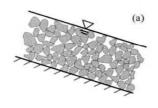
【発電所での全振幅推定結果】

地すべり	長さ L(m)	幅b (m)	厚さt (m)	土量Vs =L×b×t (m3)	すべり面 傾斜角 α(°)	進行角 γ(°)	突入位置 水深 d1(m)	発電所前 面水深 d2(m)	発電所まで の距離r (m)	発電所で の全振幅 (m)
Ls1	400	200	29	2,320,000	28	90	15	10	6,000	0.44
Ls2	540	280	40	6,048,000	28	90	15	10	5,700	0.52
Ls3	150	80	16	192,000	32	0	15	10	3,400	1.59
Ls4	400	250	36	3,600,000	28	60	15	10	4,200	1.03

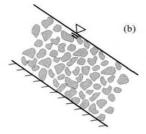

〇上記結果から、発電所での全振幅の上位2つ(Ls3、Ls4)について、詳細に検討する。

- **1 Huber, A. and W.H. Hager(1997): Forecasting impulse waves in reservoirs. Dix-neuvième Congrès desGrands Barrages C31:993-1005. Florence, Italy.
- Commission International des Grands Barrages, Paris. ※2 「地すべり地形の安定度評価に関する研究報告書(日本道路公団委託)昭和60年2月財団法人高速道路調査会」によれば、「一般の単一ブロックの地す ペリで幅50~100mmではその比は大体5~70ものが多く、幅がこれより大きくなるにつれて、この比も大きくなり、200mm前後では7~10、300mを超えると10 ~15程度となると思われる。」との記載がある。 ※3 沿岸の海の基本図(5万分の一)、若狭湾西部、1海底地形図(第6337号4)、昭和55年8月刊行、海上保安庁

地すべりによる津波評価における解析の流れ


25

〇地すべりが引き起こす津波を評価するには、海面に突入する崩壊土砂の動きを解析(土砂崩 壊シミュレーション)し、津波の初期水位形状を予測する必要がある。



- ○土砂崩壊シミュレーションは、崩壊土砂の動きを時刻歴で解析することが可能な解析コード (TITAN2D^{※1})を使用する。
- ○津波の初期水位形状の予測式は、
 - ①実験や海底地すべりの数値解析モデルの再現性を確認しているWatts et al. (2005)**2
 - ②佐竹・加藤(2002)※3が用いた運動学的海底地すべりモデル(Kinematicモデル)による 予測方法
- の2つの方法を検討する。
 - X1 TITAN2D User Guide Release 2.0.0, 2007.07.09, Geophysical Mass Flow Group (GMFG), University at Bualo, NY, USA, July 27, 2007
 - 32 Watts, P., S.T. Grilli, D.R. Tappin, and G.J. Fryer (2005): Tsunami Generation by Submarine Mass Failure. II: Preditive Equations and Case Studies, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp.298-310.
 - ※3 佐竹健治-加藤幸弘,2002、「1741年寛保津波は渡島大島の山体崩壊によって生じた」、月刊海洋/号外 No.28,pp150-160

- 〇本検討で使用する土砂崩壊シミュレーション(TITAN2D[※])では、崩壊土砂を多数の粒子の集合体からなる連続体とみなし、その流動に関して重力を駆動力とする運動方程式を力学的に記述して数値的に解く方法を用いる。
- 〇粒子流は、(a)、(b)に示すような2つの状態を遷移しながら流下すると仮定している。

(a)内部摩擦が卓越している(傾斜がゆるく速度が小さい)状態にある粒子流

(b)粒子間の衝突が卓越している(傾斜が急で速度が大きい)状態にある粒子流

* TITAN2D User Guide Release 2.0.0, 2007.07.09, Geophysical Mass Flow Group (GMFG), University at Bualo, NY, USA, July 27, 2007

土砂崩壊シミュレーション(支配方程式)

27

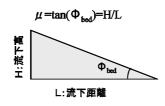
○連続の式※

$$\frac{\partial h}{\partial t} + \frac{\partial \overline{hu}}{\partial x} + \frac{\partial \overline{hv}}{\partial y} = 0$$

〇運動方程式※

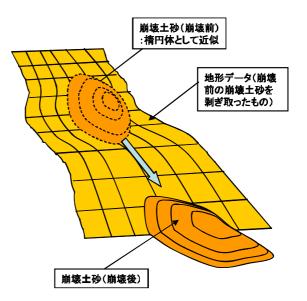
$$\begin{split} & \frac{\partial \overline{hu}}{\partial t} + \frac{\partial}{\partial x} \left(\overline{hu^2} + \frac{1}{2} k_{ap} g_z h^2 \right) + \frac{\partial \overline{huv}}{\partial y} \\ & = -h k_{ap} \operatorname{sgn} \left(\frac{\partial u}{\partial y} \right) \frac{\partial h g_z}{\partial y} \sin \phi_{\text{int}} - \frac{u}{\sqrt{u^2 + v^2}} \left[g_z h \left(1 + \frac{u}{r_x g_x} \right) \right] \tan \phi_{\text{bed}} + g_x h \end{split}$$

ここで、hは層厚、u、vは速度、k_{ap}は主動(受動)土圧係数、gは重力加速度、rは斜面の曲率、 ϕ _{int}は内部摩擦角、 ϕ _{bed}は底面摩擦角、sgn:実数aに対して、sgn(a)=1、($a \ge 0$) -1、(a < 0)である。 (上付きのバーは層の断面方向の平均を、添え字のx、y、zはそれぞれの座標軸方向の成分を示す)。


* TTTAN2D User Guide Release 2.0.0, 2007.07.09, Geophysical Mass Flow Group (GMFG), University at Bualo, NY, USA, July 27, 2007

▶地形データ: 崩壊土砂を剥ぎ取った地形データ

▶物性パラメータ


内部摩擦角: Φ 底面摩擦角: ϕ_{bed}

- •tan(φ_{het})が等価摩擦係数μに相当
- ・崩壊物の流下高Hと流下距離Lの関係式

▶崩壊土砂の形状

長軸Xr、短軸Yr、高さZrの楕円体として与える。

○推定した地すべり地形から、土砂崩壊シミュレーションに必要な地形データ、崩壊土砂量を決定 するとともに、文献を参照して物性パラメータを設定。

①Watts他による方法(初期水位波形の変換式)

29

〇土砂崩壊シミュレーションの結果から、津波の初期水位波形を予測するため、Watts et al.(2005)※1の 式を使って、以下のとおり適用した。

$$\eta(x,y) = -\frac{\eta_{0,3D}}{\eta_{\text{max}}} \operatorname{sech}^{2} \left(\kappa \frac{y - y_{0}}{w + \lambda_{0}} \right) \left(\exp \left\{ -\left(\frac{x - x_{0}}{\lambda_{0}} \right)^{2} \right\} - \kappa' \exp \left\{ -\left(\frac{x - \Delta x - x_{0}}{\lambda_{0}} \right)^{2} \right\} \right)$$

$$\eta_{0,3D} = \eta_{0,2D} \left(\frac{w}{w + \lambda_0} \right)$$

ここで、wは地すべり塊の幅、 λ_0 は特性津波波長、 η_{max} :第2式の振幅を除く右辺の最大値、 κ:3としてよい、x₀,y₀:地すべりの初期位置である。

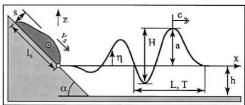
〇上式に必要なパラメータ $(w、n_{0,2D},\lambda_0$ -特性津波波長、 $\Delta x (=\lambda_0/2)$ は、津波振幅および特性波 長の予測式から算出する。

X1 Watts, P., S.T. Grilli, D.R. Tappin, and G.J. Fryer (2005): Tsunami Generation by Submarine Mass Failure. II: Preditive Equations and Case

Studies, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp.298-310.

2 Grilli, S.T., and P. Watts (2005): Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analysis, Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, pp.283-297.

①Watts他による方法(波源振幅および特性津波波長)


30

〇波源振幅 $\eta_{0.2D}$ (= a_c)は、Fritz et al.(2004)*による波源振幅予測式の入力パラメータ(=説明変 数)と出力パラメータ(=目的変数)を示す。

【変数の定義】

 $rac{a_C}{h} = 0.25 igg(rac{v_s}{\sqrt{gh}}igg)^{1.4} igg(rac{s}{h}igg)^{0.8} egin{align*} a_C:最大水位上昇量 h:海域静水深 v_s: 土塊の突入速度*2 h...$

g: 重力加速度

〇水位分布の予測式に必要な特性津波波長 λ_0 ($=L_1$)については、波源振幅を示したFritz et al.(2004)*が提案する次式を使用する。

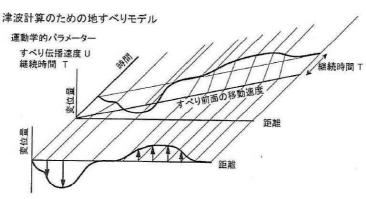
【山体崩壊による津波を対象とした波長の予測式】

$$\frac{L_{I}(x/h=5)}{h} = 8.2 \left[\frac{v_{s}}{\sqrt{gh}} \right]^{0.5} \left[\frac{V_{s}}{bh^{2}} \right]^{0.5}$$

 L_I :第一波の波長

νς:土塊の突入速度※2

V.: 土塊の体積※2


g:重力加速度

*1 H. M. Fritzl; W. H. Hager2; and H.-E. Minor, Near Field Characteristics of Landslide Generated Impulse Waves, JOURNAL OF WATERWAY, PORT, COASTAL, AND OCEAN ENGINEERING © ASCE / NOVEMBER/DECEMBER 2004

※2 TITAN2Dによる土砂崩壊シミュレーションの結果を使用

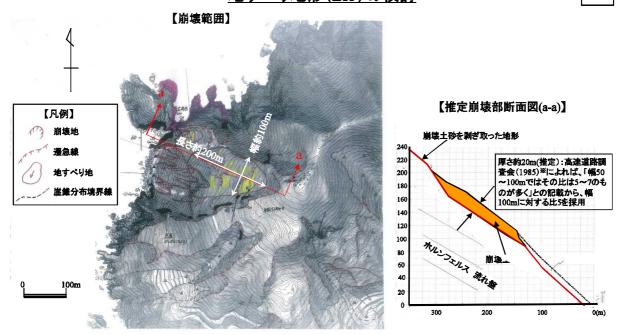
②運動学的地すべりモデル(Kinematic)による方法

31

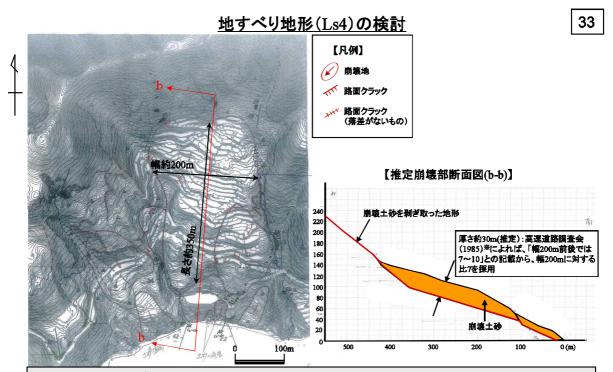
運動学的地すべりモデルの概念図(佐竹・加藤,2002※)

▶地すべり発生箇所における海面変化

- ・海底地形変化は地すべりの伝播速度Uと各地点での継続時間Tで規定される。
- -地すべりの前面は速度Uで移動する。Uには鉛直成分Uzを与条件とした。
- ·各地点の比高変化は継続時間Tで完了する。
- ここで求めた時間刻みあたりの地形変化量が海面水位と海底地形にそのまま反映されるものとして、 その時点での水位と海底地形に上積みする。

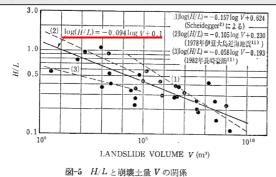

▶津波伝播計算

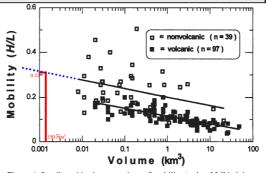
非線形長波理論に基づく、通常津波解析に用いられる平面二次元モデルを適用。


OKinematicモデルへは、TITAN2Dで得られた崩壊土砂の時刻歴変形量、伝播速度、継続時間等 を直接入力する。

※ 佐竹健治・加藤幸弘,2002、「1741年寛保津波は渡島大島の山休崩壊によって生じた」、月刊海洋/号外 No.28,pp150-160

地すべり地形(Ls3)の検討


- ○航空写真、レーザー測量による1/5,000地形図や、現地踏査の結果から、滑落崖などを確認し、地すべり地形範囲を詳細に判読するとともに、高速道路調査会(1985)※から崩壊土砂の厚さを推定して、崩壊土砂量434,000m³を算出した。
- ○崩壊土砂を剥ぎ取った地形から、土砂崩壊シミュレーションに必要な地形データを作成した。
- ※「地すべり地形の安定度評価に関する研究報告書(日本道路公団委託)昭和60年2月財団法人高速道路調査会」



- ○航空写真、レーザー測量による1/5,000地形図や、現地踏査の結果から、滑落崖などを確認し、地すべり地形範囲を詳細に判読するとともに、高速道路調査会(1985)※から崩壊土砂の厚さを推定して、崩壊土砂量1,507,000m³を算出した。
- ○崩壊土砂を剥ぎ取った地形から、土砂崩壊シミュレーションに必要な地形データを作成した。
 - ※ 「地すべり地形の安定度評価に関する研究報告書(日本道路公団委託)昭和60年2月財団法人高速道路調査会」

入力パラメータの検討

H/Lの値については、参照となる基準類がないことから、H/Lと崩壊土砂の体積との相関に関する文献を調査 調査文献は、地すべりの実例データから回帰式を推定した森脇(1987) ¹、Siebert(2002) ²を参照

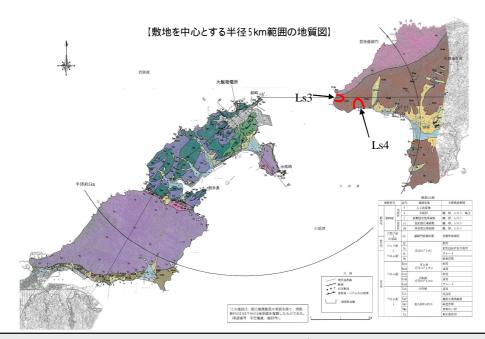
H: 流下高, L: 到達距離 Fig. 5 Correlation between H/L and landslide volume V

H: runout height, L: runout distance

Figure 4. Semilogarithmic comparison of mobility (ratio of fall height to travel distance, H/L) and volume of nonvolcanic (data from Voight et al., 1985) and volcanic debris avalanches.

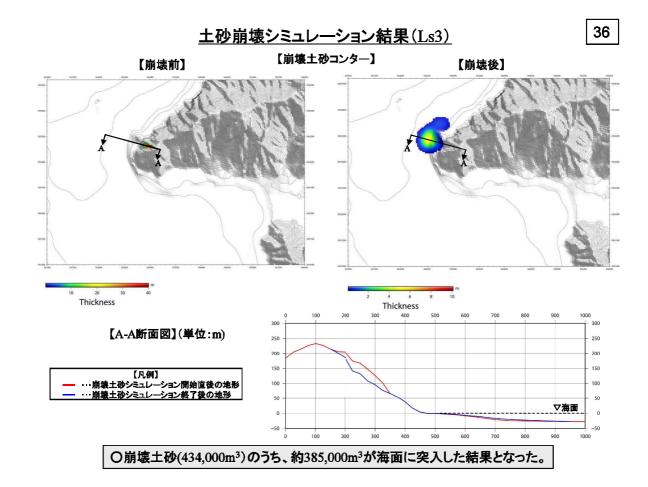
(Siebert(2002)	2]	
----------------	----	--

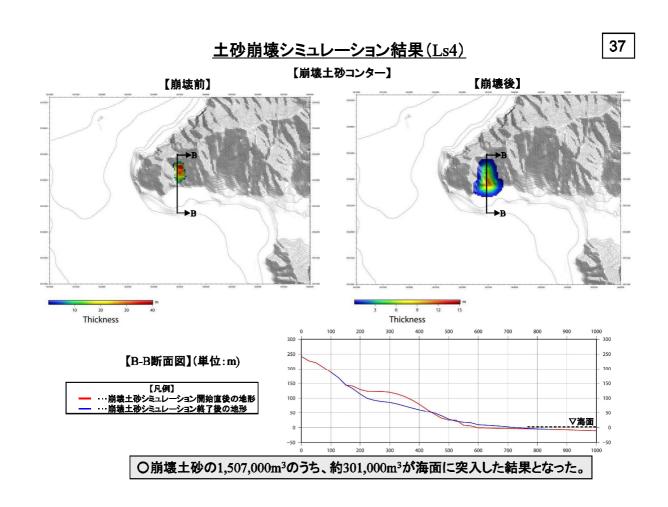
(ā	森脇(1987) 1に	追記)	[Siebert(2002) ²]			
地すべり地形	崩壊土砂量	H/L				
	(m3)	森脇(1987) 1(回帰式から算出)	Siebert(2002) ² (回帰式から読み取り・外挿)			
Ls3	434,000	0.373	0.32以上			
Ls4	1,507,000	0.331	0.32			


入力するH/Lは、上記結果を参考に、保守的に0.3で設定

- 1 森脇寛(1987)、「崩土の到達距離予測」、地すべり第24巻 第2号、Journal of Japan Landslide Society 24-2,pp13-14
- 2 Siebert, L.(2002): Landslides resulting from structural failure of volcanoes, In Evans, S.G. and DeGraff, J.V., (ed.) Catastrophic landslides: effects, occurrence, and mechanisms., Geological Society of America, Reviews in Engineering Geology, pp.209-235

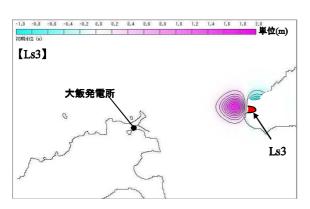
地すべり地形周辺の地質および内部摩擦角の設定

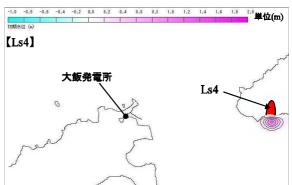

35


地表地質図から、Ls3、4は、Oish(超丹波帯大飯層の頁岩)であることを確認。

内部摩擦角については、道路土工盛土工指針 によれば、礫(35~40度)、礫混じり砂(35~40 度)、砂(30~35度)度であることから、本検討では安全側に30度を適用する。

道路土工盛土工指針(平成22年度版) 平成22年4月 社団法人日本道路協会、p101

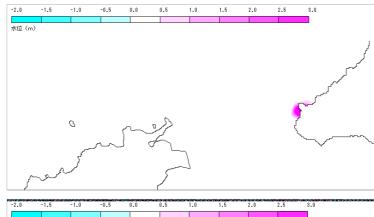

38


Wattsらの方法で求めた初期水位形状

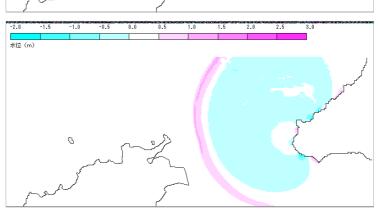
〇土砂崩壊シミュレーションから得られた崩壊土砂の体積、突入速度等から、初期水位形状を予測

パラメータ		単位	設定値		備考	
			Ls3	Ls4	1	
	突入物体積Vs	m³	385,000	301,000	TITAN2Dでの算定値	
	厚さ8	m	7.2	10	突入位置での層厚の最大値	
崩壊シミュレーション からの入力値	幅b	m	300	370	崩壊域周辺地形図より設定	
10 300 / C/3 III	突入速度vs	m/s	27.3	10.6	突入地点での最大速度	
	水深h	m	40	30	崩壊域~サイト間の水深より設定	
	2次元振幅 η _{0,2D}	m	3.98	1.59		
初期水位計算出力	第1波波長λ0	m	369	190		
	3次元振幅 η _{0,3D}	m	1.78	1.05	初期水位分布最大値	

【初期水位分布コンター】



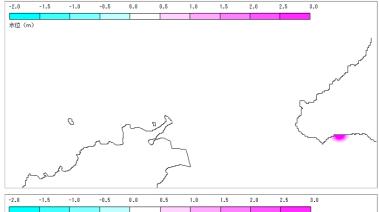
運動学的地すべりモデル(Kinematic)による津波波形の変化(Ls3)


39

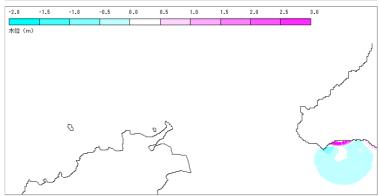
OTITAN2Dの解析結果である時刻歴の土砂層厚の変化量を、津波計算の水位および地形に与え、伝播計算を実施

【地すべり開始後10秒】

【地すべり開始後100秒】

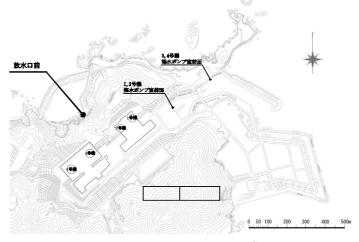


運動学的地すべりモデル(Kinematic)による津波波形の変化(Ls4)


40

OTITAN2Dの解析結果である時刻歴の土砂層厚の変化量を、津波計算の水位および地形に与え、伝播計算を実施

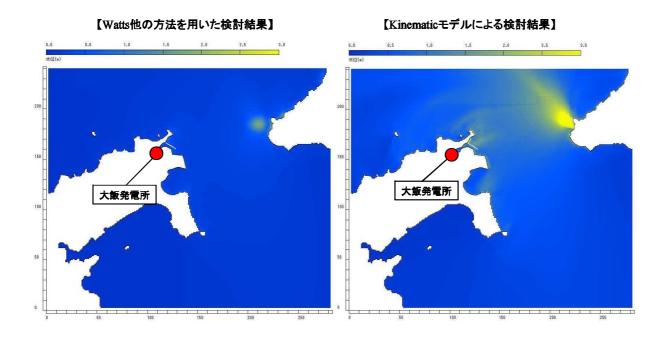
【地すべり開始後20秒】



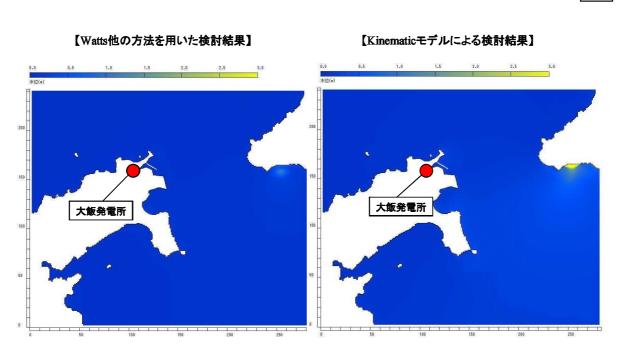
【地すべり開始後100秒】

津波水位評価結果

41


【計算結果】評価地点における最高(最低)水位*(単位はT.P.(m))

地すべり地形	初期水位の予測方法	放水口前	水口前 1,2号機海水ポンプ室前面 3,4号機海		3,4号機海水	水ポンプ室前面	
地タへり地形		最高水位	最高水位	最低水位	最高水位	最低水位	
Ls3	Watts他の予測式	0.83	0.85	-0.52	0.94	-0.53	
LSS	Kinematicモデル	1.68	1.41	-0.65	2.11	-1.20	
T -4	Watts他の予測式	0.45	0.54	-0.19	0.47	-0.17	
Ls4	Kinematicモデル	0.53	0.61	-0.26	0.67	-0.31	


※ 最高水位、最低水位および設計津波水位はいずれも朔望平均満潮位あるいは朔望平均干潮位を含む値

43

(参考)陸上の斜面崩壊(地すべり)による最高水位分布(Ls3)

(参考)陸上の斜面崩壊(地すべり)による最高水位分布(Ls4)

火山に伴う山体崩壊による津波の評価

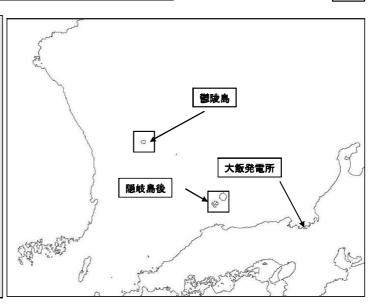

<u>検討方針</u>

- 〇日本海側における活火山については、文献調査を実施し、評価対象となる活火山の 有無を確認するとともに、津波堆積物調査の結果(約1万年前以降をカバー)を踏まえ て評価する。(p46-47)
- 〇さらに過去の火山となる第四紀火山については、活動履歴、噴火形態、噴火規模から評価する。(p47)

火山による山体崩壊に関する評価

〇活火山に関するデータベース(産業技術総合研究所:活火山データベース※1、気象庁:我が国の活火山の分 布※2)を調査し、日本海側における活火山を抽出

活火山分布図(※1から引用)


活火山分布図(※2から引用)

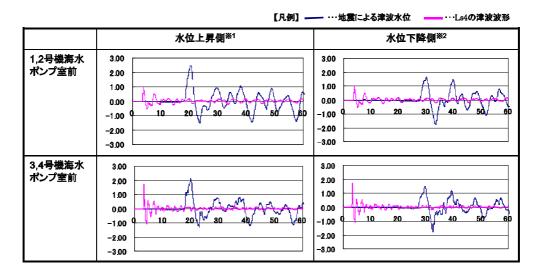
- 〇日本海側には、渡島大島(1741年活動*3)、利尻島(2000~7900年前活動*3)があるが、いずれも津波堆積 物調査の結果*4から、各発電所の安全性に影響を与えるような津波の痕跡は認められていない。
- 〇したがって、大飯発電所の安全性に影響を与えるような活火山による山体崩壊による津波はなかったもの と評価する。
- %1 http://riodb02.ibase.aist.go.jp/db099/index.html

- ※2 http://www.selsvoi.kishou.go.jp/tokyo/STOCK/kalsetsu/katsukazan_toha/katsukazan_toha.htm/#katsukazan ※3 産総研HP活火山データベース火山別噴火履歴表示http://nodb02.ibase.arst.go.p/db099/eruption/index.html ※4 関西電力株式会社,「平成23年度東北地方太平洋沖地震の知見等を踏まえた原子力施設への地震動および津波の影響に関する安全性評価のうち完新世に 関する津波堆積物調査の結果について」平成24年12月

その他の火山島に関する検討

- 〇日本の領海においては、大飯発電所の安 全性に影響を与える山体崩壊を引き起こ す活火山は認められないが、日本の領海 外では、若狭湾に最も近い活火山※1として 鬱陵島※2がある。
- ○鬱陵島については、津波堆積物調査※3に おいて、同年代のボーリングコアに火山灰 (鬱陵隠岐テフラ、約10,700年前※4)が確 認されているものの、津波堆積物は認めら れていない。
- Oしたがって、鬱陵島による津波があったと しても、大飯発電所の安全性に影響を与 えるような津波はなかったものと評価する。
- 〇また、第四紀火山としては、隠岐島後があ るが、噴火形態が溶岩流※5であること、最 大活動休止期間(約47万年)よりも最新噴 火年から現在に至る期間(約55万年前)の ほうが長く活動性が低いこと※6から山体崩 壊による津波を引き起こさないと評価する。

- ※1 気象庁HP「活火山とは」によれば、「近年の火山学の発展に伴い過去1万年間の噴火履歴で活火山を定義するのが適当であるとの認識が国際的にも 般的になりつつある」との配載がある。 スミソニアン博物館Volcanoes of the World, http://www.volcano.si.edu/inde
- ※3 関西電力株式会社、「平成23年度東北地方太平洋沖地震の知見等を踏まえた原子力施設への地震動および津波の影響に関する安全性評価のうち完新世に関する津波堆積物調査の結果について」平成24年12月 ※4 町田洋・新井房夫、2003、新疆火山灰アトラス、p61、東京大学出版会
- ※5 産業技術総合研究所「日本の第四紀火山」
- ※6 『山内靖書・沢田原弘・高漢 男・小室裕明・村上 久・小本神治・田山良・、『西郷地域の地質』、地域地質研究報告、5万分の1地質図幅、岡山(12)第一号、平成21年、独立行政法人 産業技術総合研究所、地質調査総合センター』において、池田玄武岩・約129万年前、西郷玄武岩・約82万年前、約69万 年前、岬玄武岩・約55万年前の記載があり、これらから最大活動休止期間を約47万年(129-82),最新噴火年から現在に至る期間を約55万年と想定


組合せに関する検討

津波発生要因の組合せに関する検討について

- ○津波の発生要因として考慮した地震による津波、海底地すべりによる津波、陸上の斜面崩壊 (地すべり)による津波について、最も影響が大きいものの組合せについて検討する。
- 〇これらのうち、海底地すべりによる津波については、遠方の隠岐トラフで発生するものであり、 若狭湾での地震が影響することが考えにくいこと、津波が発生しても到達時間に大きな差が 生じることから、組合せは考慮しないこととし、地震による津波と斜面崩壊による津波につい て組合せを検討した。

津波発生要因の組合せに関する検討について

〇大飯発電所への影響が最も大きい周辺の海域活断層による地震と、陸上の斜面崩壊(Ls3: Kinematicモデル)が同時に発生した場合について検討。

地震発生に伴って、斜面崩壊が生じたとした場合、斜面崩壊による津波の収束後に、地震による津波が到達することから、組合せを考慮しても大きな影響はないと評価する。

- ※1 地震による津波水位は、大陸棚外縁~B~野坂断層によるもの
- ※2 地震による津波水位は、和布ー干飯崎沖~甲楽城断層によるもの

3 . 大飯発電所 3,4	Ⅰ号機における確	率論的津波八ザ	ード評価に関す	る検討について

確率論的津波ハザード評価に関する検討

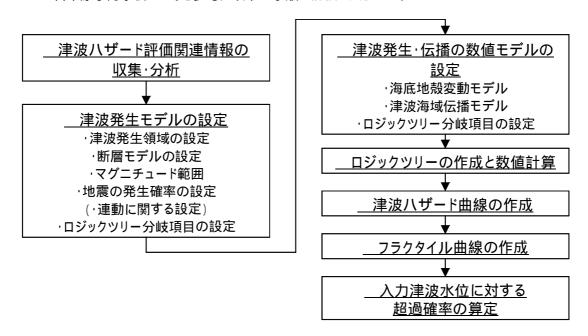
検討方針

【検討方針】

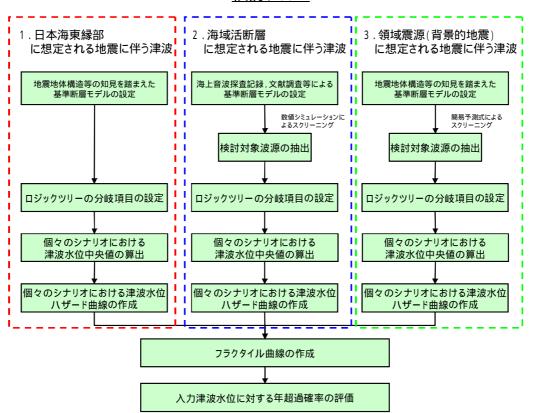
設計津波水位の超過確率については、「日本原子力学会標準 原子力発電所に対する 津波を起因とした確率論的リスク評価に関する実施基準:2011」(2012年2月 一般社団 法人日本原子力学会)(以下、「日本原子力学会2011」)に基づき算定する。

【確率論的津波ハザード評価における不確実さの取り扱い】

津波ハザード評価における不確実さについては、「日本原子力学会2011」、及び「確率論的津波ハザード解析の方法(土木学会,2011)」に基づき、以下のとおり扱う。


不確実さ		津波評価における扱い
偶然的 不確実さ	現実に存在しているが、現状では予 測不可能と考えられるばらつき	津波水位の確率分布として表現する。
認識論的 不確実さ	研究が進展すれば確定できるが現状 では予測不可能なもの	ロジックツリーの分岐として選定する。

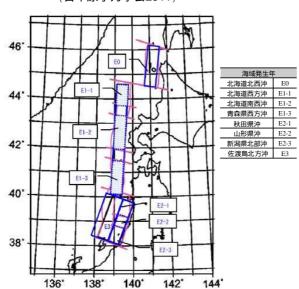
評価の流れ


2

【津波八ザード評価手順】

「日本原子力学会2011」を参考に以下の手順で評価を実施する。

3 検討フロー



1. 日本海東縁部に想定される地震に伴う津波

日本海東縁部 対象とする活動域

5

【日本海東縁部海域の大地震活動域区分】 (日本原子力学会2011)

【日本海東縁部及び大地震活動域の既往最大Mw】 (日本原子力学会2011)

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
海域	発生年	津波モデ ルのMw	既往最大 Mw (=Mmax)	「地震本部」 による 地震規模 (信頼度)
北海道北西沖 (E0)	なし			M7.8程度(D)
北海道西方沖 (E1-1)	1940	7.7	7.7	M7.5前後(B)
北海道南西沖 (E1-2)	1993	7.8	7.8	M7.8前後(B)
青森県西方沖 (E1-3)	1983	7.7	7.7	M7.7前後(B)
秋田県沖 (E2-1)	なし			M7.5程度(C)
山形県沖 (E2-2)	1833	7.8	7.8	M7.7前後(B)
新潟県北部沖 (E2-3)	1964	7.5	7.5	M7.5前後(B)
佐渡島北方沖 (E3)	なし			M7.8程度(D)

日本海東縁部については、地震の発生履歴や地質学的知見、地震調査研究推進本部(2003)「日本海東縁部の地震活動の長期評価」等の知見をもとに活動域区分を設定する。

各活動域の既往最大マグニチュードから、各活動域ごとの既往最大Mwを考慮し、マグニチュード範囲の分岐を設ける。

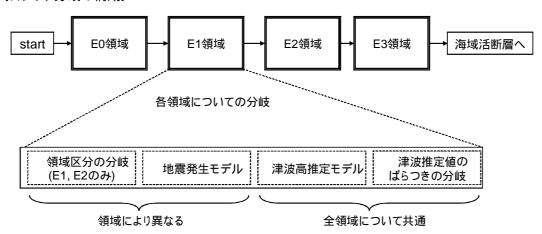
日本海東縁部 地震発生間隔

【推本の平均発生間隔と津波ハザード解析における発生間隔】

海域	平均発生間隔(地震本部)	根拠	分布の考え方
北海道北西沖 (E0)	3900年程度	約2100年前と約6000年前 に2個のイベント	発生間隔データ1個
北海道西方沖 (E1-1)	1400~3900年程度	(連続性)	一様分布(1400 - 3900)
北海道南西沖 (E1-2)	500~1400年程度	6個のイベントの平均が約 1400年	一様分布(500 - 1400)
青森県西方沖 (E1-3)	500~1400年程度	3個のイベントの平均が約 500年	一樣分布(500 - 1400)
秋田県沖 (E2-1)	1000年程度以上	(2列への配分)	一様分布(1000 - 1500)
山形県沖 (E2-2)	1000年程度以上	(2列への配分)	一様分布(1000 - 1500)
新潟県北部沖 (E2-3)	1000年程度以上	(2列への配分)	一樣分布(1000 - 1500)
佐渡島北方沖 (E3)	500~1000年程度	中嶋(2003)	一樣分布(500 - 1000)

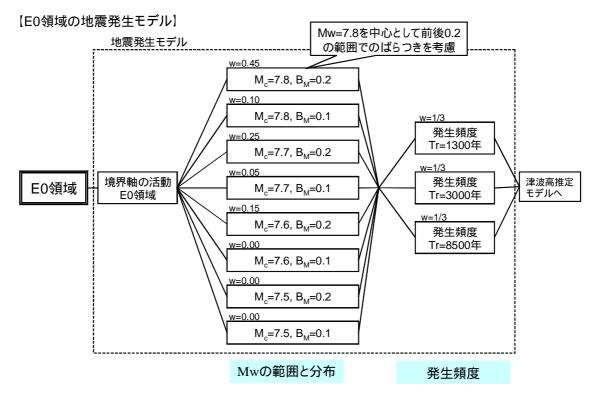
出典:確率論的津波ハザード解析の方法(土木学会,2011)

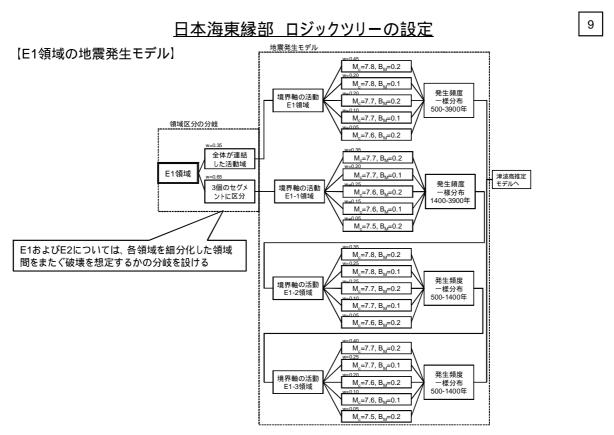
上記データから、E0~E3の各領域において、地震発生間隔の分岐を設定


日本海東縁部 ロジックツリーの構成

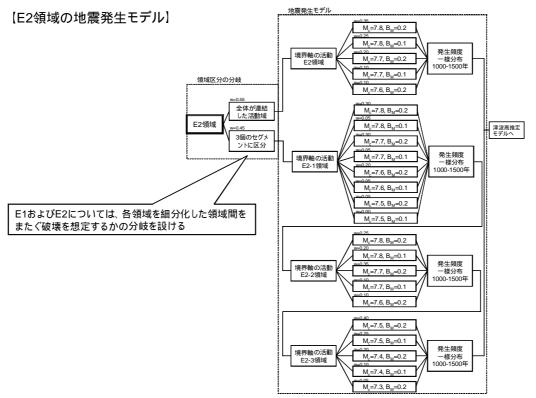
7

E0からE3までの領域についてそれぞれ評価を行い、各領域では、


- •領域区分の分岐(E1、E2の場合)
- ・地震発生モデル
- •津波高推定モデル
- ・津波推定値のばらつきの分岐
- のそれぞれについて分岐を設ける。

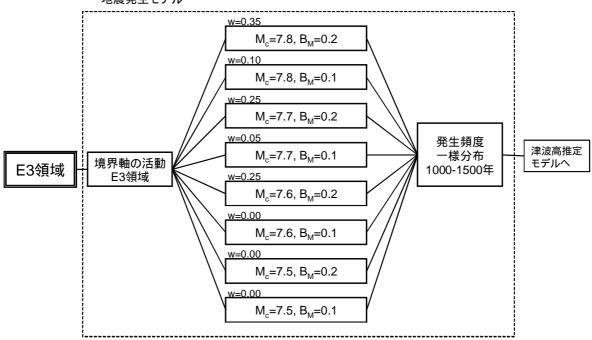

【ロジック分岐の構成】

日本海東縁部 ロジックツリーの設定


8

ロジックツリーの設定については確率論的津波八ザード解析の方法(土木学会 , 2011)によるW(重み)は土木学会及び地震専門家へのアンケートに基づき決定した

日本海東縁部 ロジックツリーの設定

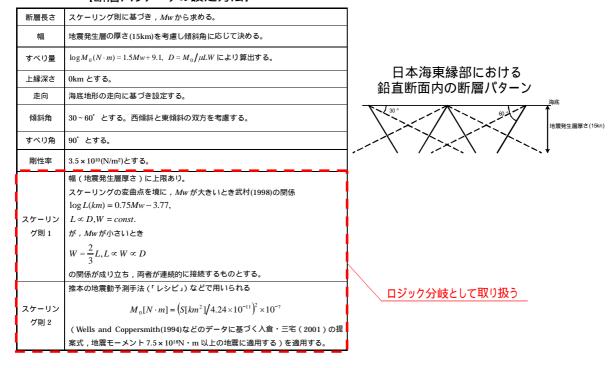


ロジックツリーの設定については確率論的津波八ザード解析の方法(土木学会,2011)による $W({\equiv} B)$ は土木学会及び地震専門家へのアンケートに基づき決定した

日本海東縁部 ロジックツリーの設定

【E3領域の地震発生モデル】

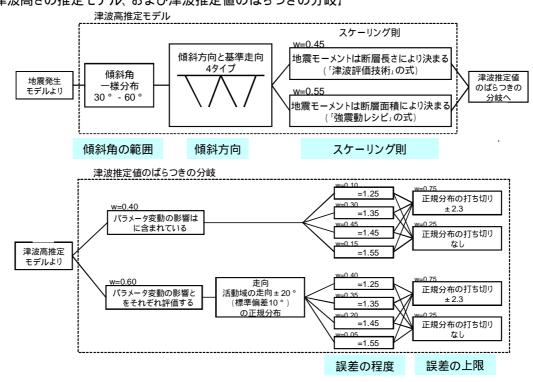
地震発生モデル


ロジックツリーの設定については確率論的津波八ザード解析の方法(土木学会,2011)による $W(\equiv a)$ は土木学会及び地震専門家へのアンケートに基づき決定した

10

13

日本海東縁部 断層パラメータの設定


【断層パラメータの設定方法】

確率論的津波ハザード解析の方法(土木学会,2011)より

日本海東縁部 ロジックツリーの設定

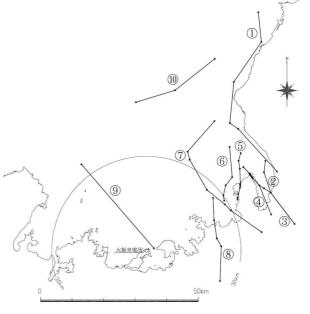
【津波高さの推定モデル、および津波推定値のばらつきの分岐】

ロジックツリーの設定については確率論的津波八ザード解析の方法(土木学会,2011)によるW(重み)は土木学会及び地震専門家へのアンケートに基づき決定した

2.海域活断層に想定される地震に伴う津波

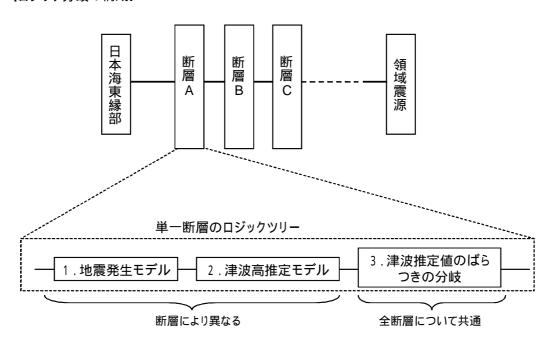
海域活断層 対象とする活動域

発電所敷地前面海域及び敷地周辺海域における海域活断層について文献調査を実施する。 発電所敷地前面海域及び敷地周辺海域において、後期更新世以降の活動を考慮する断層のうち、発電所に影響が大きいと考えられるものを検討対象断層とする。


【敷地前面及び敷地周辺における検討対象断層】

和布 - 干飯崎沖 ~ 甲楽城断層	C断層
ウツロギ峠北方 - 池河内断層	大陸棚外縁~B~ 野坂断層
浦底 - 池河内断層	三方断層
浦底 - 内池見断層	FO-A~ FO-B断層
白木 - 丹生断層	FGA3東部断層

・検討対象断層で、最も津波高さが大きくなる条件 (上縁深さ:0km,傾斜角:高角側)で数値シミュレーションを実施し、確率論的津波ハザード解析の方法 (土木学会、2011)に示される以下の式により、スクリーニングを実施


$$|X| > |H| \cdot \kappa^{2.3}$$

- X: 評価対象となる水位 H: 数値シミュレーションにより計算された津波高さ : 津波高さのばらつき (= 1.55)
- ・結果として、、、、の3つ断層についてはサイトへの影響が小さい〈除外可能と判断された。

海域活断層 ロジックツリーの構成

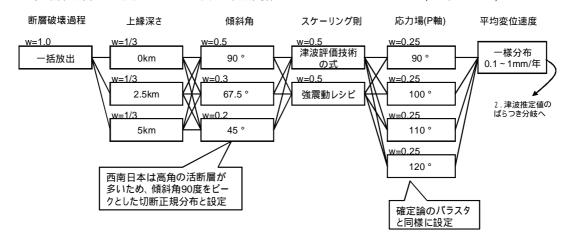
【ロジック分岐の構成】

海域活断層 ロジック分岐の設定

【地震発生モデルのロジック分岐 (基本ケース)】

分岐名	分岐の設定	設定根拠	
断層破壊過程	一括放出		
上縁深さ	一樣分布0km~5km] 確率論的津波ハザード	
傾斜角	片側正規分布45°~90°	解析の方法(土木学会、	
スケーリング則	強震動レシピ 武村式(津波評価技術の式)	2011)	
応力場(P軸角度)	一様分布90°~120°	確定論のパラメータス タディを参考に設定	
平均变位速度	一様分布 1mm/年(活動度A級下限) ~0.1mm/年(活動度C級上限)	確率論的津波八ザード 解析の方法(土木学会、 2011)	

なお、調査結果等から各パラメータが既知の場合は、個別の情報を優先する。

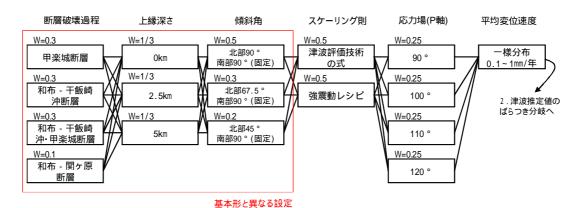

【津波推定値のばらつきのロジック分岐(共通)】

分岐名	分岐の設定	設定根拠
パラメータ変動の影響	パラメータ変動の影響は に含まれている パラメータ変動と をそれぞれ評価する	 確率論的津波八ザード
津波推定値のばらつき	=1.25, 1.35, 1.45, 1.55のいずれかに分岐	解析の方法(土木学会、
正規分布の打ち切り	±2.3 での打ち切り 打ち切りなし	2011)

◆ 基本ケース

1. 地震発生、津波高推定モデル

【海域活断層の地震発生モデル及び津波高推定モデルのロジックツリー(基本ケース)】

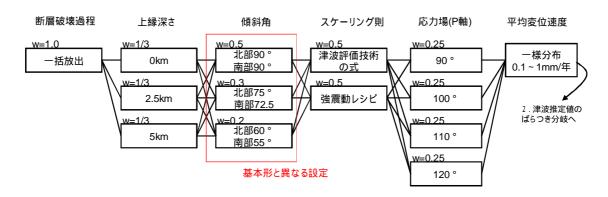

FGA3東部断層のロジックツリーについては、全ての分岐項目について基本ケースと同様

海域活断層 ロジックツリーの設定

19

- ◆ 和布 干飯崎沖~甲楽城断層
 - 1. 地震発生、津波高推定モデル

【和布 - 干飯崎 ~ 甲楽城断層のロジックツリー】

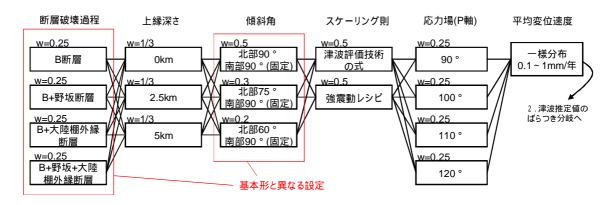


海域活断層 ロジックツリーの設定

◆ C断層

1. 地震発生、津波高推定モデル

【C断層のロジックツリー】

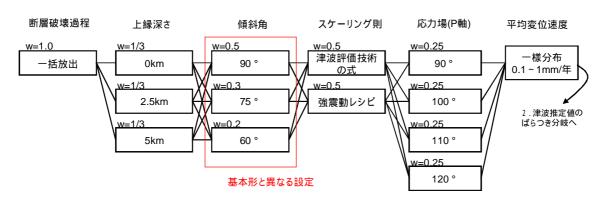


海域活断層 ロジックツリーの設定

21

- ◆ 大陸棚外縁~B~野坂断層
 - 1. 地震発生、津波高推定モデル

【大陸棚外縁~B~野坂断層のロジックツリー】

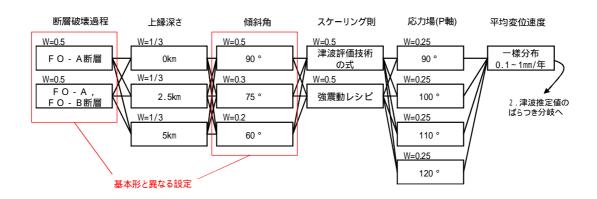


海域活断層 ロジックツリーの設定

◆ 三方断層

1. 地震発生、津波高推定モデル

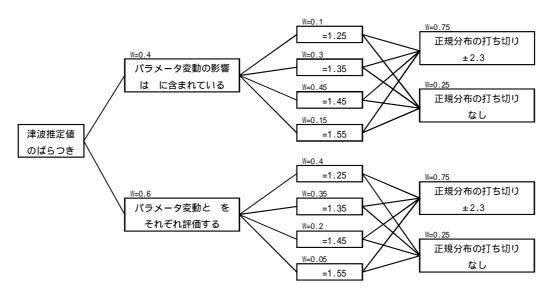
【三方断層のロジックツリー】



海域活断層 ロジックツリーの設定

23

- ◆ FO A~FO B断層
 - 1. 地震発生、津波高推定モデル


【FO - A~FO - B断層のロジックツリー】

海域活断層 ロジックツリーの設定

2.津波推定値のばらつきの分岐

【海域活断層の津波推定値のばらつきの分岐】

W(重み)は土木学会 及び地震専門家へのアン ケートに基づき決定した

25

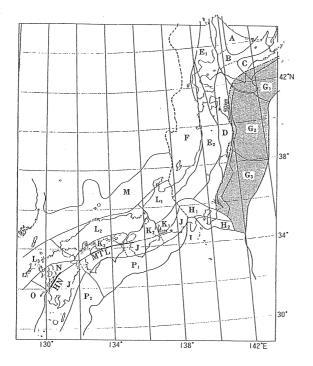
3.領域震源

現時点で海域活断層として特定されていない波源により津波が生じる場合のハザードについて,領域震源として評価する。

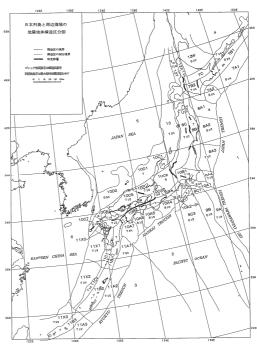
【対象とする活動域】

領域震源(場所を特定できない点震源)の評価においては、地震動八ザードで用いられている活動域と同一の設定を用いる。活動域の区分に関しては、

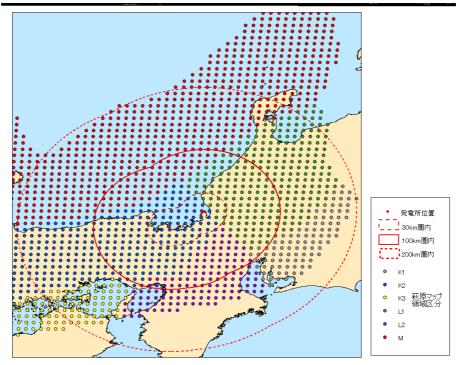
- ·荻原マップによる領域区分
- ・新垣見マップによる領域区分


についてロジック分岐を設定し、両方の区分により評価する。

敷地前面海域(約30km以内)については,海上音波探査結果等に基いて耐震設計上考慮 すべき断層を評価していることから,点震源を設定しない

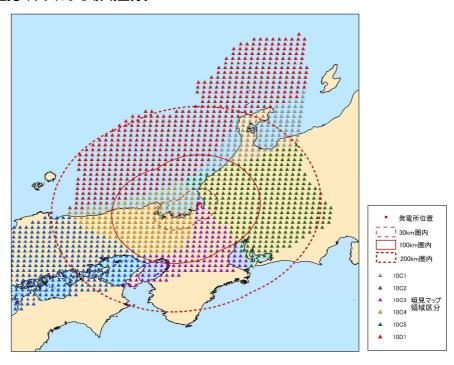

サイトからの距離		
0 ~ 30km	30km以遠	
領域震源による評価を実施しない 海上音波探査結果等に基づいて 、耐震設計上考慮すべき断層を評価している。	領域震源による評価を実施 文献調査と主要地点の音波探査を行っているものの、場所 が特定されていない断層が存在する可能性を排除できない。 一定程度の津波水位を生じるため、ハザード評価への影響 は無視できない。 簡易式およびシミュレーションによりサイトの評価レベルに 影響を与えると判定された波源を対象に、評価を行う。	

萩原マップ及び新垣見マップによる領域区分


萩原編(1991)による地震地体構造区分図

垣見ほか(2003)による地震地体構造区分図

領域震源 対象とする活動域


【萩原マップによる領域区分】

領域震源 対象とする活動域

29

【新垣見マップによる領域区分】

【萩原マップによる領域震源モデルの諸元】

領域名	最小M	最大M	b値	発生頻度 (回/年)	上縁深さ (km)
L1	5.0	7.9	0.79	0.40	
L2	5.0	7.3 7.5 7.6	0.88	1.00	0~5km 一樣分布
М	5.0	6.9	0.66	0.21	

【新垣見マップによる領域震源モデルの諸元】

領域名	最小M	最大M	b値	発生頻度 (回/年)	上縁深さ (km)
10C1	4.0	6.9	0.60	0.52	
10C2	5.0	7.9	0.79	0.48	0 ~ 5km
10C4	5.0	6.9 7.0	0.74	0.38	一樣分布
10D1	4.0	6.6	0.83	1.02	

領域震源 スクリーニング

ハザードに与える影響が非常に小さい波源の取り除くため,スクリーニングを実施

【スクリーニングの手法】

- ・それぞれの検討対象断層で簡易予測式を用いて津波水位の推定を行う。
- ・サイトの評価地点における潮位を考慮した津波高さの最大値、最小値を算出し、評価レベルに対 して、以下の式を満たす断層については検討から除外する。

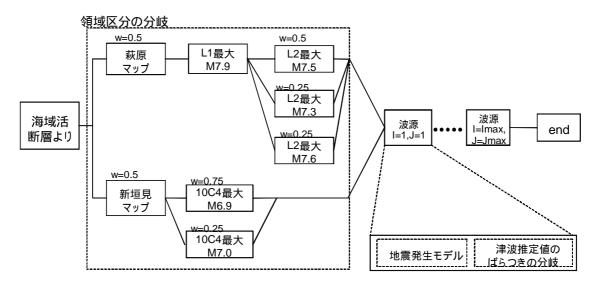
 $|X| > \alpha |H_e| \cdot \kappa^{2.3}$

X:評価対象となる水位

 $H_{\scriptscriptstyle e}$: 簡易予測式により計算された津波高さ

κ: 津波高さのばらつき(=1.55)

α: 簡易式の精度を考慮した余裕幅(=2.0)


【スクリーニングの結果】

検討対象とする領域震源(萩原マップ)

検討対象とする領域震源(新垣見マップ) • 発電所位置 ハザードに影響を 与えない距離 ハザードに影響を 与えない距離

領域震源 ロジックツリーの構成

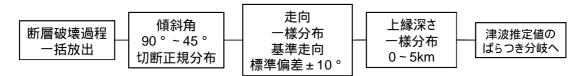
【領域震源のロジック分岐の構成】

領域震源の断層パラメータ

33

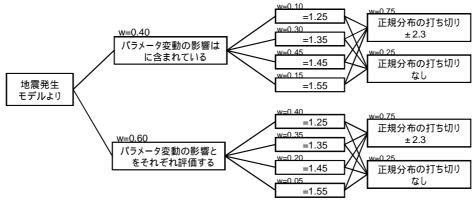
【大地震以外の上部地殻内地震(背景的地震)の断層パラメータ設定方針】

		•		
	考えられる 不確実性	基本方針	分布形	備考
	断層長さ	Mwから武村(1998)の関係で設定	1	
	断層幅	W=2L/3(地震発生層15kmを上限)		
	断層上縁深さ	断層面の範囲を地表 ~ 地震発生層 下端まで	一樣分布	
震源とサイト の位置関係 (距離)	傾斜角	45 ~ 90 °	切断正規 分布	西南日本における値 傾斜方向は地形から 決定
	すべり角	広域応力場の範囲(一様分布)	一樣分布	
	走向	各領域内における海域活断層の走 向より設定(下記参照)	一樣分布	
	位置	点震源位置に断層中心	ı	


確率論的津波八ザード解析の方法(土木学会,2011)を参考に設定

【領域震源の走向の設定】

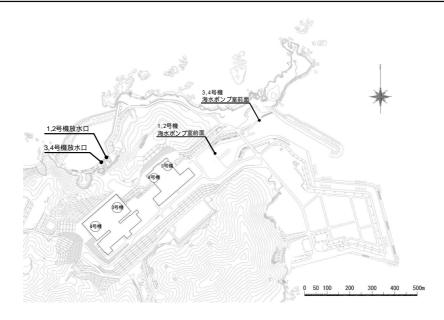
- ・領域内のセグメントの単純平均
- ・海域活断層の諸元を使用し、断層セグメントに分割
- ・どの領域に属するかの判断は,セグメント中心により実施
- ・角度の平均値は、落ち方向が異なるがセグメントの形状が同じもの(0°/180°)を同一とみなして、最も標準偏差が小さくなるように算出。落ち方向は多数決により決定。


領域震源 ロジックツリーの設定

1. 地震発生、津波高推定モデル

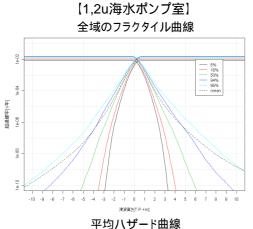
2.津波推定値のばらつきの分岐

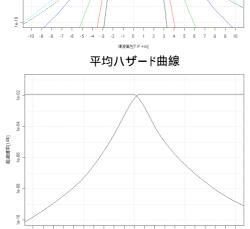
W(重み)は土木学会 及び地震専門家へのアン ケートに基づき決定した



領域震源の地震発生モデル及び津波高推定モデルのロジックツリー

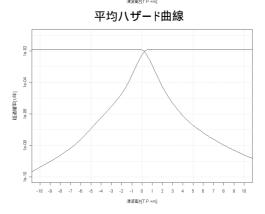
津波ハザード解析結果


35

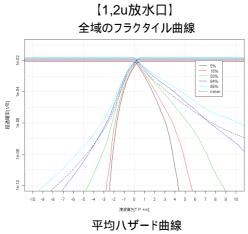

ロジックツリーに基づき、モンテカルロシミュレーションを用いて津波ハザード解析を行い、フラクタイル曲線、平均ハザード曲線として取りまとめた。

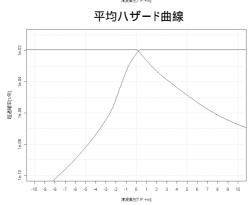
大飯発電所における評価地点

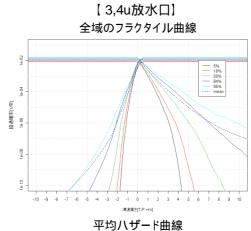
津波ハザード解析結果

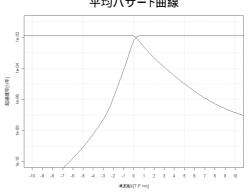


津波高さ[T.P.+m]




【3.4u海水ポンプ室】




津波ハザード解析結果

入力津波水位に対する超過確率

評価点	入力津波水位	超過確率(1/年)
1,2u海水	T.P.+2.85m	1.42 × 10 ⁻⁵
ポンプ室	T.P. 1.85m	4.82 × 10 ⁻⁵
3,4u海水	T.P.+2.54m	1.32 x 10 ⁻⁵
ポンプ室	T.P. 1.84m	2.80 x 10 ⁻⁵
1,2u 放水口	T.P. + 3.62m	6.54 × 10 ⁻⁵
3,4u 放水口	T.P. + 3.56m	5.83 × 10 ⁻⁵

4	. 大飯発電所	3,4 号機におけ	る津波によるカ	放水ピット内の	水位評価について

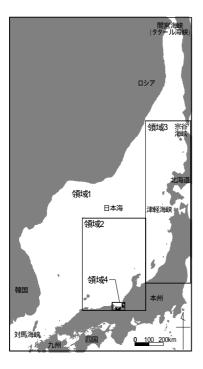
津波による放水ピット内の水位評価

津波による放水ピット内の水位評価検討フロー

津波による放水ピット内の水位評価について、以下フローのとおり検討を行った。

津波伝播計算(計算手法および計算条件)

津波伝播計算は、非線形長波理論および連続式(後藤他1982(1))を基礎方程式として、空間格子間隔 を1,350mから12.5mとした。


時間格子間隔は、安定条件(CFL条件)を満たすように設定した。

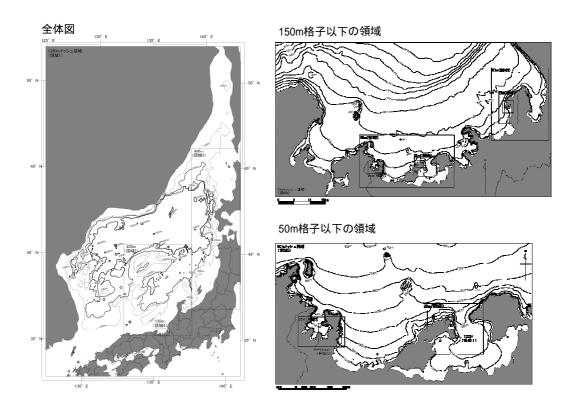
津波伝播計算の計算手法及び計算条件

	彭	设定項目	設 定 値					
津波		基礎方程式	非線形長波理論式及び連続式(後藤他(1982)(1))					
計算	変数配置	置および差分スキーム	Staggerd Leap-flog法					
		計算領域	対馬海峡から間宮海峡に至る東西方向約1,500km,南北方向約2,000km					
		空間格子間隔	1,350m 450m 150m 50m 25m 12.5m					
		時間格子間隔	0.3秒 安定条件(CFL条件)を十分満足するように設定					
計		初期条件	断層モデルを用いて、Mansinha et al.(1971) ^② の方法により計算される海底面の鉛直変位分布を初期条件とする。					
算条	境界	境界 沖側境界 特性曲線法をもとに誘導される自由透過の条件(後藤他(1982						
件	条件	陸側境界	完全反射条件					
等		海底摩擦	マニングの粗度係数 n=0.030(土木学会(2002) ⁽³⁾)					
	水平渦動粘性係数		0 m 2 /s					
		計算時間	海域活断層に想定される地震に伴う津波:3.0時間 日本海東縁部に想定される地震に伴う津波:6.0時間~7.5時間					
		計算潮位	T.P. ± 0.0m					

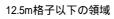
- 後藤智明・小川由信(1982): Leap-frog法を用いた津波の数値計算法, 東北大学土木工学科資料, 1982 Mansinha,Land D.E.Smylie(1971): The displacement field of inclined faults, Bulletin of the Seismological Society of America, Vol.61, No.5, pp.1433-1440. (社)土木学会(2002):原子力発電所の津波評価技術。

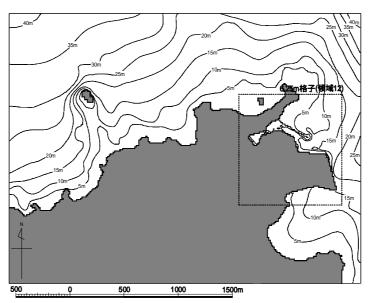
伝播計算(計算領域の空間格子間隔)

領域番号	空間格子 間隔 x(m)	最大 水深 h _{max} (m)	CFL条件 を満たす t(sec)		
1	1350	3800	4.95		
2,3	450	3700	1.67		
4	150	240	2.19		
5,6	50	90	1.19		
7~9	25	80	0.63		
10 ~ 12	12.5	60	0.36		



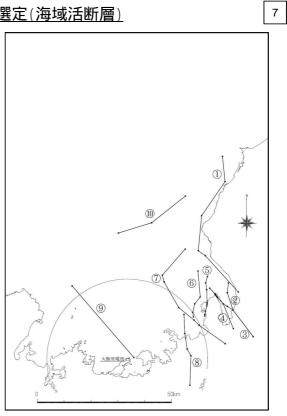
$$\Delta t \leq \frac{\Delta x}{\sqrt{2gh_{max}}}$$


3


ここに , x: 空間格子間隔 t: 時間格子間隔 h_{max}: 最大水深 g: 重力加速度

水深分布 4

水深分布 5



評価対象波源(海域活断層)の抽出

検討対象断層の選定(海域活断層)

検討対象断層は,敷地前面海域及び敷地 周辺海域において後期更新世以降の活動を考慮する断層とする。

和布 - 干飯崎沖 ~ 甲楽城断層	C断層
ウツロギ峠北方 - 池河内断層	大陸棚外縁 ~ B ~ 野坂断層
浦底 - 池河内断層	三方断層
浦底 - 内池見断層	FO-A~ FO-B断層
白木 - 丹生断層	FGA3東部断層

大飯放水ピットの津波水位(概略パラメータスタディ)

断層 No	断層名	断 層 長さ (km)	地震 規模 Mw	走行 (°) 【傾斜方向】	すべり 量(m)	傾斜 角 (°)	広域 応力場 (°)	上縁 深さ (km)	大飯発電所 放水口 最大水位 上昇量(m)
	和布 - 干飯崎沖 甲楽城断層	60	7.40	354.17 34.42 5.42 305.15 317.82 [東]	3.88	~ : 45 :90	90	0.0	2.20
	ウツロギ峠北方 - 池河内断層	23	6.84	187.12 161.85 142.85 【西】	1.91	~ : 90	90	0.0	0.58
	浦底 - 池河内断層	25	6.89	316.76 329.74 328.03 322.95 320.79 325.76 317.34 302.29 303.10 142.85 [東] は西傾斜	2.08	~ : 90	90	0.0	0.38
	浦底 - 内池見断層	18	6.76	316.76 329.74 328.03 322.95 320.79 325.76 317.34 302.29 [東]	1.66	~ : 90	90	0.0	0.35
	白木 - 丹生断層	15	6.76	15.80 350.71 358.68 0.55 6.88 14.38 11.66 1.91【東】	1.44	~ : 60	90	0.0	0.73
	C 断層(逆(の字)	18	6.76	355.19 38.15 13.09 350.89 [東]	1.44	~ : 60	110	0.0	0.81
	大陸棚外縁~B~野坂断層	49	7.28	41.12 345.44 330.27 309.19 315.54 305.27 [東]	3.76	~ : 60 ~ : 90	90	0.0	2.71
	三方断層	27	6.94	357.29 351.32 330.81 1.97【東】	1.94	~ : 60	90	0.0	1.03
	FGA3東部断層	29	7.00	231.41 252.74 [北]	2.49	~ : 90	120	0.0	1.56

概略パラメータスタディの結果、**大陸棚外縁~B~野坂断層**を抽出した。

大飯放水ピットの津波水位(詳細パラメータスタディ)

9

		Nr. 🗆	=	 /_		#T Avi	÷ 1-1		大飯発電所
断層 No	断層名	断層 長さ (km)	地震 規模 Mw	走行 (°) 【傾斜方向】	すべり 量(m)	傾斜 角 (°)	広域 応力場 (°)	上縁 深さ (km)	放水口 最大水位 上昇量(m)
								0.0	2.71
	大陸棚外縁~B~野坂 断層		7.28	41.12	3.76	~ : 60 ~ :	90	2.5	1.72
				345.44 330.27				5.0	1.02
		49		309.19 315.54 305.27			95	0.0	2.54
						90	100	0.0	2.50
				【東】			110	0.0	2.55
							120	0.0	2.00

詳細パラメータスタディの結果、大陸棚外~B~野坂断層(広域応力場90°、上縁深さ0km) を抽出した。

以上の結果により、放水ピットの詳細遡上モデルによる数値計算を実施。

評価対象波源(日本海東縁部)の抽出

| 大会計対象断層の選定(日本海東縁部) | 11 | 45° N | 130° E 130° E 140° E 141° E 142° E | 143° E |

日本海東縁部の想定津波として,北海道沖から新潟県沖までの広範囲な海域に モーメントマグニチュードMw=7.85の基準断層モデルを設定

大飯放水ピットの津波水位(概略パラメータスタディ)

【概略パラメータスタディ結果一覧】(1/4)

活	南北	傾斜パ	走行	断層	地震	すべり	傾斜	すべ	上縁	大飯発電所	
域	位置	ターン	(°)	長さ (km)	規模 Mw	(m)	角 (°)	り 角 (°)	深さ (km)	放水口 最大水位 上昇量(m)	
			13	131.1	7.85	9.44	60	90	0.0	0.97	l
			3	131.1	7.85	9.44	60	90	0.0	1.32	l
			353	131.1	7.85	9.44	60	90	0.0	1.27	l
			193	131.1	7.85	9.44	60	90	0.0	1.11	l
			183	131.1	7.85	9.44	60	90	0.0	1.04	
	北		173	131.1	7.85	9.44	60	90	0.0	1.30	
	10		13	131.1	7.85	9.44	60	90	0.0	0.85	
			3	131.1	7.85	9.44	60	90	0.0	0.89	l
			353	131.1	7.85	9.44	60	90	0.0	1.12	
			193	131.1	7.85	9.44	60	90	0.0	1.05	l
			183	131.1	7.85	9.44	60	90	0.0	0.97	
E1			173	131.1	7.85	9.44	60	90	0.0	0.96	
			13	131.1	7.85	9.44	60	90	0.0	1.53	
			3	131.1	7.85	9.44	60	90	0.0	1.78	
			353	131.1	7.85	9.44	60	90	0.0	1.96	
			193	131.1	7.85	9.44	60	90	0.0	1.43	
			183	131.1	7.85	9.44	60	90	0.0	1.89	
	中央		173	131.1	7.85	9.44	60	90	0.0	2.09	
			13	131.1	7.85	9.44	60	90	0.0	1.41	
			3	131.1	7.85	9.44	60	90	0.0	1.83	
			353	131.1	7.85	9.44	60	90	0.0	2.11	
			193	131.1	7.85	9.44	60	90	0.0	1.71	
			173	131.1	7.85	9.44	60	90	0.0	1.49	ı

活動	南北	傾斜パ	走行	断層	地震	すべり	傾斜	すべ	上緑	大飯発電所		
域	位置	ターン	(°)	長さ (km)	規模 Mw	量 (m)	角 (°)	り角 (°)	深さ (km)	放水口 最大水位 上昇量(m)		
			13	131.1	7.85	9.44	60	90	0.0	1.58		
			3	131.1	7.85	9.44	60	90	0.0	1.94		
			353	131.1	7.85	9.44	60	90	0.0	2.59		
			193	131.1	7.85	9.44	60	90	0.0	1.72		
			183	131.1	7.85	9.44	60	90	0.0	2.07		
	中央		173	131.1	7.85	9.44	60	90	0.0	3.38		
	- 南		13	131.1	7.85	9.44	60	90	0.0	1.81		
	1		3	131.1	7.85	9.44	60	90	0.0	2.26		
			353	131.1	7.85	9.44	60	90	0.0	3.12		
					193	131.1	7.85	9.44	60	90	0.0	2.39
			183	131.1	7.85	9.44	60	90	0.0	1.87		
E1			173	131.1	7.85	9.44	60	90	0.0	2.23		
			13	131.1	7.85	9.44	60	90	0.0	1.64		
					3	131.1	7.85	9.44	60	90	0.0	2.66
			353	131.1	7.85	9.44	60	90	0.0	2.96		
			193	131.1	7.85	9.44	60	90	0.0	1.90		
	_		183	131.1	7.85	9.44	60	90	0.0	2.09		
	南		173	131.1	7.85	9.44	60	90	0.0	3.34		
	北		13	131.1	7.85	9.44	60	90	0.0	1.92		
			3	131.1	7.85	9.44	60	90	0.0	2.37		
			353	131.1	7.85	9.44	60	90	0.0	2.80		
			193	131.1	7.85	9.44	60	90	0.0	1.81		
			173	131.1	7.85	9.44	60	90	0.0	2.22		

大飯放水ピットの津波水位(概略パラメータスタディ)

| 【概略パラメータスタディ結果一覧] (2/4)

活動域	南北位置	傾斜パ ターン	走行 (°)	断層 長さ (km)	地震 規模 Mw	すべ リ 量 (m)	傾斜 角 (°)	すべ り角 (°)	上縁 深さ (km)	大飯発電所 放水口 最大水位 上昇量(m)
			13	131.1	7.85	9.44	60	90	0.0	1.82
			3	131.1	7.85	9.44	60	90	0.0	2.22
			353	131.1	7.85	9.44	60	90	0.0	2.84
			193	131.1	7.85	9.44	60	90	0.0	2.10
	_		183	131.1	7.85	9.44	60	90	0.0	2.34
	南		173	131.1	7.85	9.44	60	90	0.0	2.52
	中央		13	131.1	7.85	9.44	60	90	0.0	2.04
			3	131.1	7.85	9.44	60	90	0.0	2.45
			353	131.1	7.85	9.44	60	90	0.0	3.29
			193	131.1	7.85	9.44	60	90	0.0	1.94
			183	131.1	7.85	9.44	60	90	0.0	2.14
E 1			173	131.1	7.85	9.44	60	90	0.0	2.36
			13	131.1	7.85	9.44	60	90	0.0	3.59
			3	131.1	7.85	9.44	60	90	0.0	2.76
	١.		353	131.1	7.85	9.44	60	90	0.0	2.54
			193	131.1	7.85	9.44	60	90	0.0	3.09
			183	131.1	7.85	9.44	60	90	0.0	3.26
	南		173	131.1	7.85	9.44	60	90	0.0	2.62
			13	131.1	7.85	9.44	60	90	0.0	2.98
			3	131.1	7.85	9.44	60	90	0.0	2.60
			353	131.1	7.85	9.44	60	90	0.0	2.45
			193	131.1	7.85	9.44	60	90	0.0	2.57
			173	131.1	7.85	9.44	60	90	0.0	3.03

活	南			断層	地震	すべ	信仰名斗	すべ	上級	大飯発電所
動域	北位 置	傾斜パターン	走行 (°)	長さ (km)	規模 Mw	I) 量(m)	角 (°)	り角 (°)	深さ (km)	放水口 最大水位 上昇量(m)
			30	131.1	7.85	9.44	60	90	0.0	2.47
			20	131.1	7.85	9.44	60	90	0.0	1.88
			10	131.1	7.85	9.44	60	90	0.0	1.92
			210	131.1	7.85	9.44	60	90	0.0	1.56
			200	131.1	7.85	9.44	60	90	0.0	1.69
	北		190	131.1	7.85	9.44	60	90	0.0	1.80
	10		30	131.1	7.85	9.44	60	90	0.0	1.52
			20	131.1	7.85	9.44	60	90	0.0	1.56
			10	131.1	7.85	9.44	60	90	0.0	1.45
			210	131.1	7.85	9.44	60	90	0.0	0.95
			200	131.1	7.85	9.44	60	90	0.0	0.75
E 2			190	131.1	7.85	9.44	60	90	0.0	0.77
			30	131.1	7.85	9.44	60	90	0.0	1.85
			20	131.1	7.85	9.44	60	90	0.0	1.27
			10	131.1	7.85	9.44	60	90	0.0	1.41
			210	131.1	7.85	9.44	60	90	0.0	1.46
			200	131.1	7.85	9.44	60	90	0.0	1.93
	中央		190	131.1	7.85	9.44	60	90	0.0	1.29
	 ^		30	131.1	7.85	9.44	60	90	0.0	1.67
			20	131.1	7.85	9.44	60	90	0.0	1.42
			10	131.1	7.85	9.44	60	90	0.0	1.32
			210	131.1	7.85	9.44	60	90	0.0	0.85
			190	131.1	7.85	9.44	60	90	0.0	0.72

大飯放水ピットの津波水位(概略パラメータスタディ)

14

放水口 最大水位 上昇量(m)

1.89

2.54

【概略パラメータスタディ結果一覧】(3/4)

_			_									_								_
活動	南北位置	傾斜パター ン	走行 (°)	断層 長さ (km)	地震 規模 Mw	すべり 量(m)	傾 斜 角 (°)	すべ り角 (°)	上縁 深さ (km)	大飯発電所 放水口 最大水位 上昇量(m)		活動域	南北位置	傾斜バ ターン	走行 (°)	断層 長さ (km)	地震規模w	すべ り 量(m)	傾斜角。)	す/ リカ (°
Г			30	131.1	7.85	9.44	60	90	0.0	1.67	1				30	131.1	7.85	9.44	60	90
			20	131.1	7.85	9.44	60	90	0.0	1.32	1				20	131.1	7.85	9.44	60	90
	1		10	131.1	7.85	9.44	60	90	0.0	1.55	1				10	131.1	7.85	9.44	60	90
			210	131.1	7.85	9.44	60	90	0.0	1.24	1				210	131.1	7.85	9.44	60	90
			200	131.1	7.85	9.44	60	90	0.0	1.30	1				200	131.1	7.85	9.44	60	90
Е	Ι		190	131.1	7.85	9.44	60	90	0.0	1.36	1		中		190	131.1	7.85	9.44	60	90
2	南		30	131.1	7.85	9.44	60	90	0.0	1.26			央		30	131.1	7.85	9.44	60	90
			20	131.1	7.85	9.44	60	90	0.0	1.30	1				20	131.1	7.85	9.44	60	90
	1		10	131.1	7.85	9.44	60	90	0.0	1.43	1				10	131.1	7.85	9.44	60	90
			210	131.1	7.85	9.44	60	90	0.0	0.88					210	131.1	7.85	9.44	60	90
			200	131.1	7.85	9.44	60	90	0.0	0.75	1				200	131.1	7.85	9.44	60	90
			190	131.1	7.85	9.44	60	90	0.0	0.84]	E 3			190	131.1	7.85	9.44	60	90
Г			30	131.1	7.85	9.44	60	90	0.0	2.61					30	131.1	7.85	9.44	60	90
			20	131.1	7.85	9.44	60	90	0.0	2.24	1				20	131.1	7.85	9.44	60	90
	1		10	131.1	7.85	9.44	60	90	0.0	2.58]				10	131.1	7.85	9.44	60	90
			210	131.1	7.85	9.44	60	90	0.0	2.06					210	131.1	7.85	9.44	60	90
			200	131.1	7.85	9.44	60	90	0.0	1.94	1				200	131.1	7.85	9.44	60	90
E 3	яt		190	131.1	7.85	9.44	60	90	0.0	1.75	1		南		190	131.1	7.85	9.44	60	90
"			30	131.1	7.85	9.44	60	90	0.0	2.29					30	131.1	7.85	9.44	60	90
			20	131.1	7.85	9.44	60	90	0.0	2.78					20	131.1	7.85	9.44	60	90
	1		10	131.1	7.85	9.44	60	90	0.0	1.88	1				10	131.1	7.85	9.44	60	90
			210	131.1	7.85	9.44	60	90	0.0	1.82					210	131.1	7.85	9.44	60	90
			190	131.1	7.85	9.44	60	90	0.0	1.75	1				190	131.1	7.85	9.44	60	90

大飯放水ピットの津波水位(概略パラメータスタディ)

【概略パラメータスタディ結果一覧】(4/4)

洋	南			断層	地震		信仰記斗	すべ	上級	大飯発電所					
活動域	北位置	傾斜パ ターン	走行 (°)	長さ (km)	地模 規模 Mw	すべり 量(m)	角 (°)	り角 (°)	深さ (km)	放水口 最大水位 上昇量(m)					
			30	131.1	7.85	9.44	60	90	0.0	2.28					
			20	131.1	7.85	9.44	60	90	0.0	2.74					
	北		10	131.1	7.85	9.44	60	90	0.0	2.43					
	10		210	131.1	7.85	9.44	60	90	0.0	2.28					
			200	131.1	7.85	9.44	60	90	0.0	2.97					
			190	131.1	7.85	9.44	60	90	0.0	3.24					
			30	131.1	7.85	9.44	60	90	0.0	2.97					
Е			20	131.1	7.85	9.44	60	90	0.0	1.96					
3 B	中							10	131.1	7.85	9.44	60	90	0.0	2.89
ь	央		210	131.1	7.85	9.44	60	90	0.0	2.12					
			200	131.1	7.85	9.44	60	90	0.0	2.31					
			190	131.1	7.85	9.44	60	90	0.0	1.78					
					30	131.1	7.85	9.44	60	90	0.0	2.78			
			20	131.1	7.85	9.44	60	90	0.0	2.47					
	南		10	131.1	7.85	9.44	60	90	0.0	2.11					
			210	131.1	7.85	9.44	60	90	0.0	2.30					
			190	131.1	7.85	9.44	60	90	0.0	1.88					

概略パラメータスタディの結果、**日本海東緑E1南、傾斜パターン 走行13°**を抽出した。

大飯放水ピットの津波水位(詳細パラメータスタディ)

活動域	南北位置	傾斜 パターン	走行 (°)	位置調整	傾斜 角 (°)	上縁 深さ (km)	断層 長さ (km)	地震 規模 Mw	すべり 量(m)	すべり角 (°)	大飯発電所 放水口 最大水位 上昇量(m)
EI	南		13	基準	60.0	0.0	131.1	7.85	9.44	90	3.59
						2.5	131.1	7.85	9.44	90	3.57
						5.0	131.1	7.85	9.44	90	3.03
					52.5	0.0	131.1	7.85	9.44	90	3.46
					45.0	0.0	131.1	7.85	9.44	90	3.13
					30.0	0.0	131.1	7.85	9.44	90	2.00
				右へ1/2dx	60.0	0.0	131.1	7.85	9.44	90	3.46
				上へ1/3dx	60.0	0.0	131.1	7.85	9.44	90	2.72
				上へ2/3dx	60.0	0.0	131.1	7.85	9.44	90	2.06

詳細パラメータスタディの結果、日本海東縁E1南、走行13°(傾斜角60°、上縁深さ0km)を抽出した。

以上の結果により、放水ピットの詳細遡上モデルによる数値計算を実施。

17

放水ピットの詳細遡上モデルによる数値計算

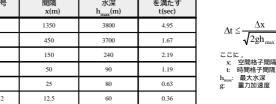
18

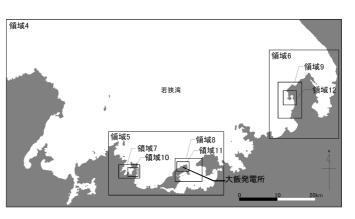
放水ピットの詳細遡上モデルの計算手法および計算条件)

津波伝播計算は、非線形長波理論および連続式(後藤他1982(1))を基礎方程式として、空間格子間隔 を1,350mから12.5mとした。

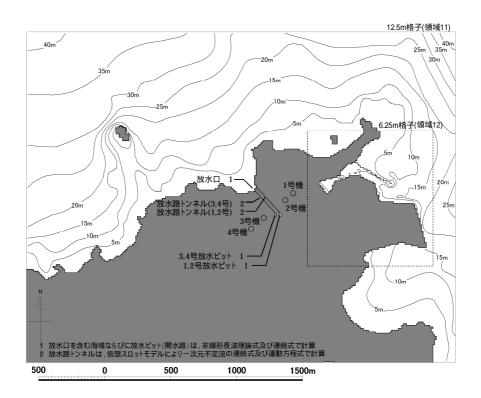
放水路トンネル(管路)においては、仮想スロットモデルによる一次元不定流の連続式および運動方程 式により算出した。

時間格子間隔は、安定条件(CFL条件)を満たすように設定した。

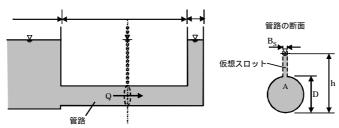

津波伝播計算の計算手法及び計算条件


	項目	設 定 値	
	基礎方程式	海域および開水路:非線形長波理論式及び連続式(後藤他(1982)) 管路:仮想スロットモデルによる一次元不定流の連続式及び運動方程 式	
	計算領域	津波の波源域を十分に含む範囲	
空間格子間隔		1,350m 450m 150m 50m 25m 12.5m	
	時間格子間隔	3s(安定条件 (C.F.L.条件)を満足するように設定)	
	初期条件	断層モデルを用いて,Mansinha et al.(1971)の方法により計算される 海底面の鉛直変位分布を初期条件とする	
境	沖側境界	自由透過の条件(後藤他(1982))	
界条	陸側境界	完全反射条件	
件	越流境界	本間の越流公式	
	取水条件	取水なし	
粗度係数		海 域:n=0.030	
水	平渦動粘性係数	Om²/s	
	計算時間	海域活断層: 地震発生後 3.0時間 日本海東縁断層: 地震発生後 4.0時間	
	計算潮位	朔望平均満潮位(T.P.+0.40m)	

伝播計算(計算領域の空間格子間隔)


領域番号	空間格子 間隔 x(m)	最大 水深 h _{max} (m)	CFL条件 を満たす t(sec)
1	1350	3800	4.95
2,3	450	3700	1.67
4	150	240	2.19
5,6	50	90	1.19
7,8,9	25	80	0.63
10,11,12	12.5	60	0.36

伝播計算(計算領域の空間格子間隔:領域11拡大図)



放水ピットの詳細遡上モデルの計算手法および計算条件)

重動方程

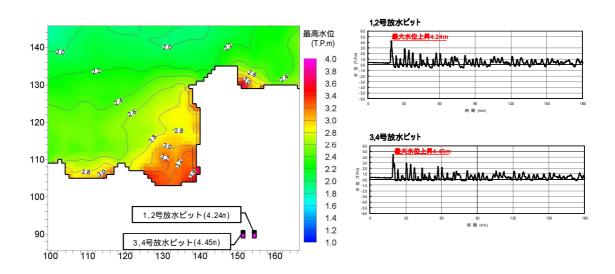
21

放水路トンネル(管路)においては、仮想スロットモデルによる一次元不定流の連続式および運動方程式により算出した。

開水路の連続式及び運動方程式

17

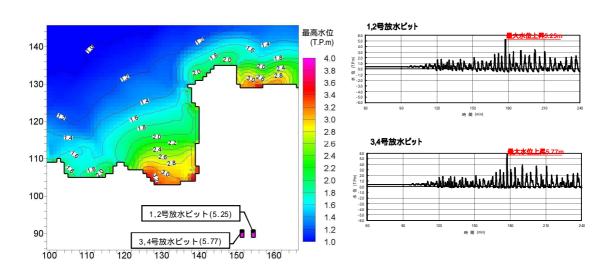
$$\begin{split} \frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} &= 0 \\ \frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{D}\right) + \frac{\partial}{\partial y} \left(\frac{MN}{D}\right) + gD\frac{\partial \eta}{\partial x} + f_c\frac{MQ}{D^2} &= 0 \\ \frac{\partial N}{\partial t} + \frac{\partial}{\partial x} \left(\frac{MN}{D}\right) + \frac{\partial}{\partial y} \left(\frac{N^2}{D}\right) + gD\frac{\partial \eta}{\partial y} + f_c\frac{NQ}{D^2} &= 0 \end{split}$$


$$\begin{array}{c} \text{CCC}, \ \eta: \text{Xmoonining} \\ \text{Down}, \ h: \text{Bink}; \\ \text{Mod.}, \ N \rightarrow D, \ (u,v): (x,y) \text{ Thinoning}, \\ \text{Quantity}, \ g: \text{ all primate}, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{Primate }, \ g: \text{ all primate }, \\ \text{ all primate }, \\ \text{ all prima$$

管路の連続式及び運動方程式

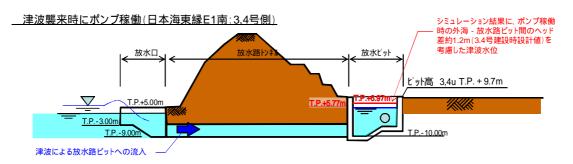
22

大飯放水ピットの津波水位(大陸棚外縁~B~野坂断層)


対象波源: **大陸梱外縁 ~ B ~ 野坂断層 (広域応力場90°,上縁深さ0km)** 格子サイズ: 12.5m 潮位条件: T.P. ± 0.0m(計算結果にH.W.L. T.P.+0.40mを考慮)

大飯放水ピットの津波水位(日本海東縁部E1南)

23


対象波源: **日本海東緑E1南(傾斜パターン , 走向13°, 基準位置, 傾斜角60°, すべり角90°, 上縁深さ0km)** 格子サイズ: 12.5m 潮位条件: T.P. ± 0.0m(計算結果にH.W.L. T.P.+0.40mを考慮)

津波による放水ピット内の水位評価検討結果

	対象波源	評価対象	津波による遡上高さ	ポンプ稼動を考慮した遡 上高さ	
海域活	大陸棚外縁~B~野坂	1,2号放水ピットの 上端レベル	T.P.+4.24m	T.P.+5.44m	
断層断層		3,4号放水ピットの 上端レベル	T.P.+4.45m	T.P.+5.65m	
日本海		1,2号放水ビットの 上端レベル		T.P.+5.25m	T.P.+6.45m
東縁部	日本海東縁E1南	3,4号放水ピットの 上端レベル	T.P.+5.77m	T.P.+6.97m	

5	. 大飯発電所 3,4	号機における	る原子力発電所の	竜巻影響評価につい	17
---	-------------	--------	----------	-----------	----

1. はじめに

「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準を定める規則(仮称)」第6条に関連して、原子炉施設の供用期間中に極めてまれに発生する突風・強風を引き起こす自然現象としての竜巻及びその随伴事象等によって原子炉施設の安全性を損なうことのない設計であることを評価するための「原子力発電所の竜巻影響評価ガイド(案)」(以下、「ガイド案」という。)に基づき、竜巻影響評価を以下の2点について実施する。

- ・設計竜巻および設計荷重(設計竜巻荷重およびその他の組み合わせ荷重)の設定
- ・ 設計荷重に対する竜巻防護施設の構造健全性等の維持により 安全機能が維持されることの評価

2. 評価の基本的事項

2.1 竜巻影響評価の対象施設

以下の(1)および(2)に示す施設を竜巻影響評価の対象施設と する。

(1) 竜 巻 防 護 施 設

「基準地震動及び耐震設計方針に係る審査ガイド(仮称)」の 重要度分類における耐震 S クラスの設計を要求される設備 (系統・機器) および建屋・構築物等とする。

(2) 竜巻防護施設に波及的影響を及ぼし得る施設

当該施設の破損等により竜巻防護施設に波及的影響を及ぼして 安全機能を喪失させる可能性が否定できない施設、またはその施 設の特定の区画(注 2.1)。

(注 2.1) 竜巻防護施設を内包する区画。

- 2.2 評価の基本的な考え方
- 2.2.1 評価の基本フロー

基準竜巻、設計竜巻および設計荷重を適切に設定するとともに評価対象施設を抽出し、設計荷重に対する竜巻防護施設の構造健全性について検討することより、安全機能が維持されていることの確認を行う。

2.2.2 評価対象施設に作用する荷重

以下に示す設計荷重を適切に設定する。

(1) 設計竜巻荷重

設計竜巻荷重を以下に示す。

①風圧力

設計竜巻の最大風速による風圧力

②気圧差による圧力

設計竜巻における気圧低下によって生じる評価対象施設内外 の気圧差による圧力

③飛来物の衝撃荷重

設計竜巻によって評価対象施設に衝突し得る飛来物(以下、「設計飛来物」という)が評価対象施設に衝突する際の衝撃荷重

(2) 設計 竜巻荷重と組み合わせる荷重

竜巻荷重と組み合わせる荷重を以下に示す。

- ①評価対象施設に常時作用する荷重、運転時荷重等
- ② 竜 巻 以 外 の 自 然 現 象 (注 2.2) に よ る 荷 重 、設 計 基 準 事 故 時 荷 重 等
- (注2.2) 竜巻との同時発生が想定され得る雷、雪、雹及び大雨等の自 然現象を含む。
- 2.2.3 施設の安全性の確認方針

設計竜巻荷重及びその他組み合わせ荷重(常時作用している荷 重、竜巻以外の自然現象による荷重、設計基準事故時荷重等)を 適切に組み合わせた設計荷重に対して、評価設計対象施設、あるいはその特定の区画(注 2.3)の構造健全性等が維持されて安全機能が維持されることを確認する。

(注2.3) 竜巻防護施設を内包する区画。

3. 基準竜巻・設計竜巻の設定

3.1 概要

設計竜巻荷重を設定するまでの基本的な流れを図3.1に示す。

竜巻検討地域の設定 大飯発電所が立地する地域を基に設定

基準竜巻の最大風速(V_B)の設定 (竜巻検討地域における竜巻の発生頻度や最大風速の年超過確率等を参照し、最大風速を設定)

設計竜巻の最大風速(V_D)の設定 (大飯発電所サイト特性等を考慮して必要に応じてV_Bの割り増し等を行い、最大風速を設定)

設計竜巻の特性値の設定

(V_D等に基づいて移動速度、気圧低下量等の特性値を設定)

設計竜巻荷重(F」)の設定

(風圧力、気圧差、飛来物の衝突による衝撃荷重 を設定)

図3.1 基準竜巻・設計竜巻の設定に係る基本フロー

3.2 竜巻検討地域の設定

竜巻検討地域は、北海道から本州の日本海側の海岸に沿った海

側 5kmと山側 5kmの地域(面積 33,395km²)とする。図 3.2 に竜巻検討地域および竜巻の発生状況(1961 年~2012 年 6 月)、添付資料 1 に対象の竜巻検討地域において発生した竜巻一覧を示す。

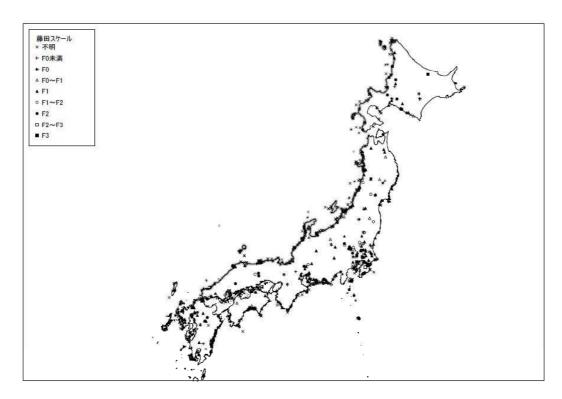


図3.2 竜巻検討地域および竜巻の発生状況*1 ※1 気象庁 「竜巻等の突風データベース」より作成

添付資料1: 竜巻検討地域において発生した竜巻

3.3 基準竜巻の設定

基準竜巻の最大風速 (V_B) は以下の(1)、(2)より設定を行った。 (1)過去に発生した竜巻による最大風速 (V_{B1})

竜巻は日本全国で発生しているが、図 3.3 に示す竜巻の都道府 県別発生件数より、その発生頻度に地域特性があることが分かる。 北海道西部、東北地方の日本海側の県、北陸地方、中国地方の日 本海側の竜巻発生頻度が高い。但し、福井県、京都府、兵庫県で の発生件数は少なく、太平洋側の岩手県でも少ない。福井県等こ れらの共通点としてリアス式海岸のような狭隘地が多いことが考えられる。また、日本で発生した竜巻のうち、比較的大きな $F2\sim F3$ および F3 の発生状況を日本海側と太平洋側で調査したところ、日本海側では $F2\sim F3$ および F3 の竜巻は発生していないことがわかった。(表 3.1、図 3.4 参照)

以上より、竜巻の発生頻度と発生する竜巻の大きさには地域特性があり、また、過去に発生した竜巻による最大風速は、竜巻発生の地域特性を反映すべきであると言える。よって、竜巻発生の地域特性を反映するため、竜巻検討地域において、過去に発生した最大の竜巻の最大風速をV_{B1}とする。

竜巻検討地域における過去に発生した最大の竜巻の最大風速 は、気象庁の「竜巻等の突風データベース」の情報から調査を行 っており、十分信頼性のあるデータを用いた。

竜巻検討地域内で1961年から2012年6月の間に発生した竜巻は192個であり、そのうち過去最大の竜巻はF2であった。F2における風速は $50\text{m/s}\sim69\text{m/s}$ であることから、過去に発生した最大の竜巻の最大風速 V_{RI} を69m/sとした。

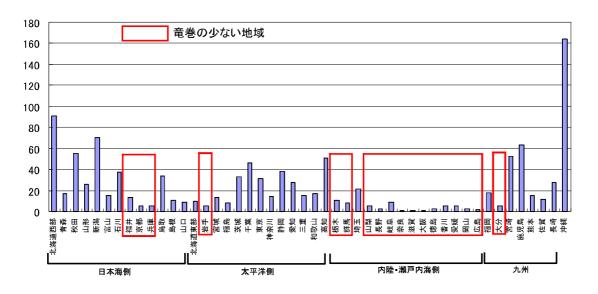


図3.3 竜巻の都道府県別発生件数*2 (1961年~2012年6月) ※2 気象庁 「竜巻等の突風データベース」より作成

表 3.1 F2~F3、F3の竜巻発生場所**3 (1961年~2012年6月)

Fスケール	発生日時	発生場所緯度	発生場所経度	発生場所
$F2 \sim F3$	1966年01月04日12時48分	35度21分49秒	140度9分46秒	千葉県 南総町
$F2 \sim F3$	1967年10月28日03時12分	35度42分3秒	140度43分10秒	千葉県 飯岡町
$F2\!\sim\! F3$	1968年09月24日19時05分	32度7分16秒	131度32分8秒	宮崎県 高鍋町
$F2\sim F3$	1969年12月07日18時00分	34 度 45 分 4 秒	137 度 22 分 46 秒	愛知県 豊橋市
$F2 \sim F3$	1978年02月28日21時20分	35度32分1秒	139度41分50秒	神奈川県 川崎市
$F2\sim F3$	1990年02月19日15時15分	31度15分38秒	130度16分35秒	鹿児島県 枕崎市
F3	1971年07月07日07時50分	35 度 52 分 45 秒	139度40分13秒	埼玉県 浦和市
F3	1990年12月11日19時13分	35度25分27秒	140度17分19秒	千葉県 茂原市
F3	1999年09月21日11時07分	31度12分1秒	137 度 23 分 5 秒	愛知県 豊橋市
F3	2006年11月07日13時23分	43 度 58 分 39 秒	143度42分12秒	北海道網走支庁 佐呂間町
F3	2012年05月06日12時35分	36度6分38秒	139度 56分 44秒	茨城県 常総市

※3 気象庁 「竜巻等の突風データベース」より作成

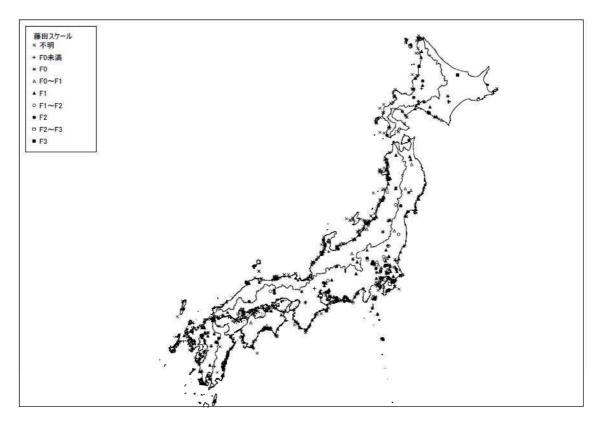


図 3.4 日本海側と太平洋側における竜巻の発生状況***(1961年~2012年6月)

※4 気象庁 「竜巻等の突風データベース」より作成

(2) 竜巻最大風速のハザード曲線による最大風速 (V_{Ro})

竜巻の発生について統計的に評価を行うため、竜巻検討地域におけるハザード曲線を算定し、年超過確率 10^{-5} に相当する竜巻最大風速を V_{B2} とする。

竜巻検討地域内で 1961 年から 2012 年 6 月の間に発生した竜巻は 192 個であり、そのうち過去最大の竜巻でも F2 であることから、これを基に大きな風速まで与える信頼性の高いハザード曲線を算定することは困難であると判断した。そこで、竜巻検討地域の特性は、竜巻検討地域における年発生個数の期待値のみに反映し、その他、ある竜巻が発生した場合の被災面積の期待値、その竜巻の風速特性については、日本全国の過去のデータを元にすることを基本とした。但し、

日本で観測されていない F4、F5 の非常に大きな竜巻の特性は、米国で設計用竜巻の風速を評価した際の手法を参考にした。

ハザード曲線評価に用いた竜巻のデータは、気象庁の竜巻等の突風 データベースの情報を基にした。

算定した竜巻最大風速のハザード曲線を図 3.5 に示す。図 3.5 より、ハザード曲線における年超過確率 10^{-5} に相当する竜巻の最大風速 $V_{\rm B2}$ を $69 {\rm m/s}$ とした。

以上、(1)、(2)より算定した竜巻の最大風速を表 3.2 に示す。

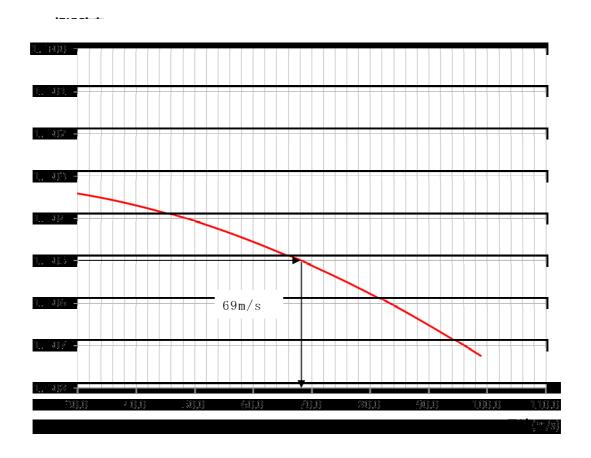


図3.5 竜巻最大風速のハザード曲線

表3.2 竜巻の最大風速の算定結果

	最大風速
過去に発生した竜巻による最大風速V _{B1}	69m/s
竜巻最大風速のハザード曲線による最大風速V _{B2}	69m/s

以上(1)、(2)より、大飯発電所における基準竜巻の最大風速は69m/s とする。

参考に、米国の原子力施設における推奨設計用竜巻風速は、米国を3地域に分けて年超過確率毎に NUREG/CR-4461, Rev. 2 に詳細に示されており、表 3.3 のとおりである。地域区分は図 3.6 に示す。

米国は日本よりも竜巻の観測体制が整っており、多くの有効な観測データが存在し、詳細な統計解析が可能であると考えられることから、表 3.2 に示す年超過確率は信頼性の高いデータであると言える。今回、大飯発電所における竜巻検討地域において推定した年超過確率 10⁻⁵ に相当する竜巻の最大風速V_{B2}69m/sは、米国東海岸等(Region II)と米国西海岸等(Region III)の年超過確率 10⁻⁵の風速よりも大きく、巨大竜巻が来襲する米国中央部(Region II)での年超過確率 10⁻⁵の風速、米国西海岸等(Region IIII)での年超過確率 10⁻⁷の風速とほぼ同等の値となっている。

よって、大飯発電所における竜巻検討地域において推定した年超過確率 10^{-5} に相当する竜巻の最大風速 $V_{\rm B2}69{\rm m/s}$ は、米国における推奨設計用竜巻風速と比較して妥当な値であると言える。

なお、日本で過去に発生した最大の竜巻F3の最大風速 92m/sは、米 国東海岸等(Region III)と米国西海岸等(Region IIII)の年超過確率 10⁻⁷ の風速よりも大きい値となっている。

したがって、大飯発電所における基準竜巻 69m/s は十分保守性のあるものである。

表3.3 米国における設計用竜巻風速

		女ご 不国にわける政司用电台風極	1-431) OEXE	二万电仓域区		
	設計用竜巻風速(mph)	風速 (mph)		設計用竜巻	設計用竜巻風速(m/sに換算	6算)
年超過確率	Region I Region II		Region II	RegionⅢ Region I		RegionII
10-5	160	140	100	72	63	45
10-6	200	170	130	68	92	28
10^{-7}	230	200	160	103	68	72

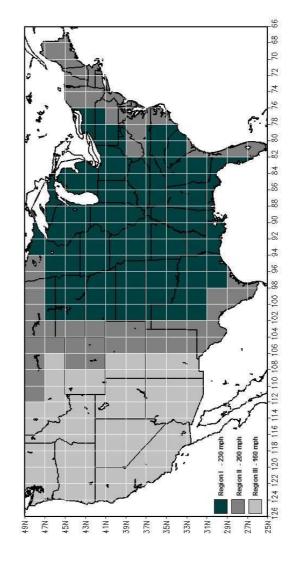


図3.6 米国における竜巻風速の年超過確率10-7の地域図

(参考) 竜巻最大風速のハザード曲線の算定の仕方

竜巻最大風速のハザード曲線は、米国 NRC による設計用竜巻風速評価のもとになる NUREG/CR-4461Rev. 2 に従い、建屋等が竜巻により被害を受ける確率と、被害を受けた時にある風速を超える確率を掛け合わせる条件付確率(竜巻被害発生時の風速の年超過確率)として算定した。竜巻の観測データは日本の観測データを最大限活かした。なお、竜巻発生個数に係る評価においては、F0 未満、不明を含めてすべてを発生個数としてカウントした。風速を伴う評価においては、不明は含めず、F0 未満、F0 以下および F0 は F0、F0~F1 および F1 は F1、F1~F2 および F2 は F2、F2~F3 および F3 は F3 として取り扱った。

(1) 竜巻影響エリアの設定

竜巻影響エリアは、竜巻検討地域(北海道から本州の日本海側の海岸に沿った海側 5kmと山側 5kmの地域(面積 33,395km²))と評価対象施設の代表幅として大飯 3,4 号機の評価対象施設の内、幅が最も大きい原子炉周辺建屋(平面=71m×98.6m、対角線長さ 121.5m)より 150mとした。竜巻の移動方向は、評価対象施設の代表幅を対角線より設定することから、最も被害を大きく受ける方向とした。

竜巻による被害幅と被害域長さは、日本で観測された竜巻の観測データより非超過確率分布を求め、対数正規分布曲線で近似を行い求めた期待値とした。

(2) 竜巻の年発生数の期待値の設定

竜巻検討地域における竜巻の年発生数の分布は、平均値 3.69 個の 2 倍を超える標準偏差 7.55 個を持つ非常に偏った分布をしており、ポアソン分布を当てはめることは適さなかった。ガイド案の示すポアソン分布では平均値を期待値とみなし、そのままハザード評価をすることとなるが、竜巻検討地域における年発生数に非常に偏りのある傾向を考慮し、保守的な期待値を定めることとした。すなわち、平均値

にデータの偏りの度合いを表す標準偏差を加えた平均+標準偏差の値 11.24 個より、保守的に竜巻の年発生数の期待値を 15 個とした。設定した期待値 15 個を超えるのは、52 年中 7.6%の 4 年間だけである。したがって、52 年中の 92.4%以上の年における年発生数は設定した値を超えることがなく、設定した期待値は十分保守的な値である。また、その値を期待値としたハザード評価は十分保守的である。なお、竜巻検討地域における竜巻の発生数は少なく、陸側 5km、海側 5km を1km ごとに設定を行うと、極度にデータ不足となることから、竜巻検討地域全体で竜巻の年発生数の期待値を設定した。

(3) 竜巻最大風速の確率分布の設定

竜巻最大風速の確率分布は、日本で観測された竜巻の観測データを基に、風速の年超過確率の特性をワイブル分布で近似した曲線として設定した。その評価に当たって、日本で公表されている竜巻の大きさはFスケールによって表されているが、Fスケールで与えられる風速は、各Fスケールで平均時間間隔が異なっている。一方、EFスケールは、3秒平均での風速に統一されている。最大風速は平均時間に依存することから、統計的に評価する際は、平均時間が統一された風速の尺度を用いることが適している。従って、FスケールをEFスケールでの風速とし、最終的に得られたEFスケールでの最大風速をFスケール相当に換算した。

(4) 竜巻最大風速のハザード曲線の算定

(1)~(3)の設定より、竜巻検討地域において、建屋等の構造物が無い箇所を竜巻が襲う場合の竜巻被害発生時の風速の年超過確率(点構造物の竜巻被害発生時の風速の年超過確率)および建屋等を竜巻が襲う場合の竜巻被害発生時の風速の年超過確率(大きさのある構造物の竜巻被害発生時の年超過確率)をそれぞれ算定し、両者を足し合わせて竜巻最大風速のハザード曲線を算定した。

(5)年超過確率に対応する竜巻最大風速 (V_{B2}) の算定

(4)で算定した竜巻最大風速のハザード曲線において、ガイド案を 参考に年超過確率 10⁻⁵に相当する風速をV_R,とした。

添付資料2: 竜巻最大風速のハザード曲線の算定の仕方について

3.4 設計竜巻の設定

設計竜巻の最大風速(V_n)および特性値を以下のとおり設定する。

(1)設計竜巻の最大風速(V_n)

一般に地形効果による風の増幅は、傾斜地や尾根状地形を風が流れるとき、傾斜地や尾根状地形の風上側では、風は傾斜地や尾根状地形によってせき止められ、平均風速は平坦な地形上よりも小さくなるが、風は斜面を上がるにつれて加速するため、斜面の中程よりも上の地表面付近の平均風速は平坦な地形よりも大きくなる。

一方、大飯発電所は三方を山に囲まれ北東方向が開かれた幅 500m ほどの谷状の狭隘な地形に立地しており、前述の地形効果による風の 増幅の条件には当てはまらない。また、数値流体計算による狭隘地形 が竜巻状旋回気流に与える影響を評価したところ、大飯発電所のよう な谷間地形では海側から入ってきた竜巻は風速を落としながら進んでいくことを確認している。

添付資料3:狭隘地形が竜巻状旋回気流に与える影響について

以上より、設計竜巻の最大風速V_Dは、大飯発電所が立地する地形では竜巻の増幅は考えられないことから、風速の割り増しは行わない。

(2)設計竜巻の特性値

設計竜巻の特性値は、竜巻検討地域における竜巻の観測データが不足していることから、ランキン渦モデルを仮定の上、①~⑤に従い設

定した。表 3.4 に示す。

①設計竜巻の移動速度(V_T)

$$V_T = 0.15 \cdot V_D$$

 $V_D(m/s)$: 設計竜巻の最大風速

②設計竜巻の最大接線風速(V_{Rm})

$$V_{Rm} = V_D - V_T$$

 $V_D(m/s)$: 設計竜巻の最大風速、 $V_T(m/s)$: 設計竜巻の移動速度

③設計竜巻の最大接線風速が生じる位置での半径(R_m)

$$R_m = 30(m)$$

④設計竜巻の気圧低下量(ΔP)

$$\Delta P = \rho \cdot V_{Rm}^{2}$$

ho: 空気密度(1.22(kg/m^3))、 $V_{Rm}(m/s)$: 設計竜巻の最大接線風速

⑤設計竜巻の最大気圧低下率((dp/dt)max)

$$(dp/dt)_{\max} = (V_T/R_m) \cdot \Delta P$$

 $V_T(m/s)$: 設計竜巻の移動速度、 $R_m(m/s)$: 設計竜巻の最大接線風速半径

表3.4 設計竜巻の特性値

最大	移動速度	最大接線	最大接線	気圧低下量	最大気圧
風速	$V_{T}(m/s)$	風速	風速半径	ΔP(hPa)	低下率
V _D (m/s		$V_{Rm} (m/s)$	R _m (m)		(dp/dt) max
)					(hPa/s)
69	10	59	30	43	15

今回、竜巻影響評価は事業者として初めての取組みであり、知見拡充の観点から、『東京工芸大学:「平成21~22年度原子力安全基盤調査研究(平成22年度)、竜巻による原子力施設の影響に関する調査研究」、独立行政法人原子力安全基盤機構委託研究報告書、平成23年2月』で示された下記設計竜巻(表3.5に示す)の設計荷重に対しても、建屋・構築物、設備(系統・機器)の安全機能維持について確認を行う。

表3.5 知見拡充で使用する設計竜巻の特性値

最大	移動速度	最大接線	最大接線	気圧低下量	最大気圧
風速	V _T (m/s)	風速	風速半径	Δ P(hPa)	低下率
V _D (m/s)		$V_{Rm} (m/s)$	R _m (m)		(dp/dt) max
					(hPa/s)
100	16	84	30	85	45

4. 竜巻影響評価

4.1 評価概要

評価の概要は以下のとおりとする。

- (1)設計竜巻および設計荷重(設計竜巻荷重およびその他の組み合わせ荷重)の設定
- (2)設計荷重に対する竜巻防護施設の構造健全性等の維持により安全機能が維持されることの評価

4.2 評価対象施設

- (1) 竜 巻 防 護 施 設
 - ①建屋·構築物

「基準地震動及び耐震設計方針に係る審査ガイド(仮称)」の重要度分類における耐震Sクラスの設計を要求される建屋として、以下を抽出した。

- 原子炉格納容器(PCCV)
- ・原子炉周辺建屋(E/B)
- 制御建屋(C/B)

② 設 備

「基準地震動及び耐震設計方針に係る審査ガイド(仮称)」の重要度分類における耐震Sクラスの設計を要求される設備であり、外殻となる施設により防護が期待できない設備として、以下を抽出した。

- ・海水ポンプ
- 排気筒(建屋外)
- (2) 竜巻防護施設に波及的影響を及ぼし得る施設
 - ①建屋、構築物

当該施設の破損により、竜巻防護施設に機械的な波及的影響 を及ぼして安全機能を喪失させる可能性が否定できない施設は、 竜巻防護施設に隣接する以下の建屋とした。

タービン建屋(T/B)

② 設 備

(a) 当該施設の破損により、竜巻防護施設に機械的な波及的影響を及ぼし得る施設

当該施設の破損により、竜巻防護施設に機械的な波及的 影響を及ぼして安全機能を喪失させる可能性が否定でき ない施設として、以下を抽出した。

- ・海水ポンプ室クレーン
- (b) 当該施設の破損により、耐震Sクラス設備に機能的な波及的 影響を及ぼし得る施設

当該施設の破損により、耐震Sクラス設備に機能的な波及的影響を及ぼして安全機能を喪失させる可能性が否定できない施設として、換気・冷却等が必要な耐震Sクラス設備を内包する区画の換気空調設備の内、以下を抽出した。

- ・排気筒 (建屋内)
- アニュラス空気浄化系
- · 安全補機室冷却系
- ・ディーゼル発電機室換気系
- ・電動補助給水ポンプ室換気系
- · 制御用空気圧縮器室換気系
- · 安全補機開閉器室空調系
- 蓄電池室排気系
- · 中央制御室空調系

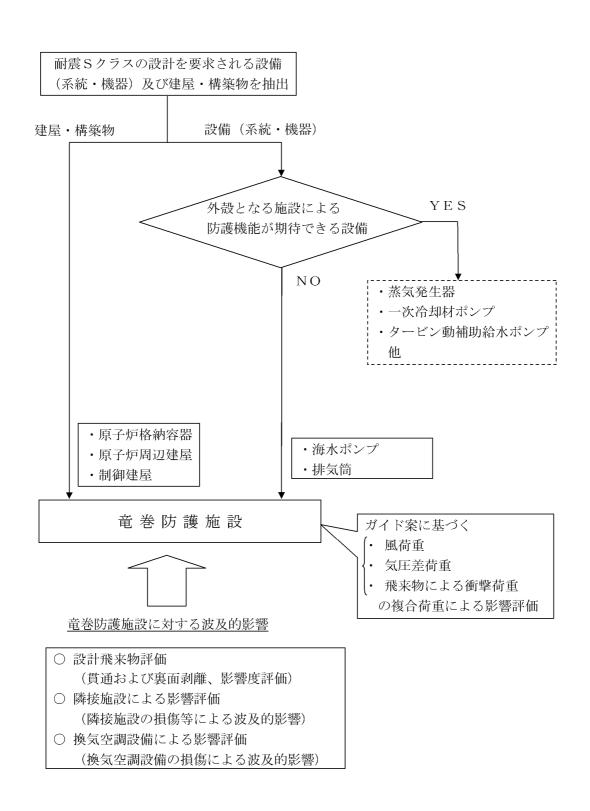


図4.1 竜巻防護施設抽出フロー

- 4.3 評価荷重の設定
- 4.3.1 設計竜巻荷重の設定

設計竜巻の最大風速V_D等に基づき、以下のとおり設定する。

(1)設計竜巻による風圧力の設定

設計竜巻の水平方向の最大風速によって施設(屋根を含む)に作用する風圧力(P_D)は、「建築基準法施行令」及び「日本建築学会建築物荷重指針・同解説」に準拠して、下式により算定する。

なお、ガスト影響係数(G)は G=1.0、風力係数(C)は施設の形状や風圧力が作用する部位(屋根、壁等)に応じて設定する。

 $P_D = q \cdot G \cdot C \cdot A$

q:設計用速度圧、G:ガスト影響係数(=1.0)、C:風力係数、A:施設の受圧面積 $q=(1/2)\cdot \rho \cdot V_p^2$

 ρ : 空気密度、 V_p : 設計竜巻の最大風速

(2)設計竜巻における気圧低下によって生じる評価対象施設内外の 気圧差による圧力の設定

設計竜巻による評価対象施設内外の気圧差による圧力は、気圧 低下量(ΔP)に基づき設定する。

建星・構築物等

建屋については、気圧差による圧力荷重が最も大きくなる「閉じた施設」を想定し、内外気圧差による圧力荷重W_Pを以下の式により設定する。

 $W_P = \Delta P \cdot A$

ΔP: 気圧低下量、A: 施設の受圧面積

竜巻防護施設を内包する建屋・構築物について、開口部(窓、

扉、シャッター)および建屋天井について影響を評価し、当該 施設が破損した場合には安全機能維持について確認を行う。

② 設 備 (系 統 · 機 器)

設備については、気圧差による圧力荷重が最も大きくなる「閉じた施設」を想定し、内外気圧差による圧力荷重W_Pを以下の式により設定する。

 $W_{P} = \Delta P \cdot A$

ΔP: 気圧低下量、A: 施設の受圧面積

外気と隔離されている区画の境界部等気圧差による圧力影響を受ける設備について、圧力影響により作用する応力が許容値内であるかを確認し、許容値を上回る場合には設備が破損した場合の安全機能維持への影響について確認する。

(3)設計竜巻による飛来物が評価対象施設に衝突する際の衝撃荷重の設定

①設計飛来物の設定

設計飛来物は、ガイド案の解説表4.1に示される飛来物とし、表4.1の通りとする。なお、解説表4.1に示される飛来物は、竜巻による原子力施設への影響に関する調査研究(注4.1)において福島第二原子力発電所を対象に調査された結果より設定されており、同様な原子力発電所の運営を行っている大飯発電所の設計飛来物としても妥当である。

(注4.1)東京工芸大学「平成21~22年度原子力安全基盤調査研究 (平成22年度) 竜巻による原子力施設への影響に関する 調査研究」独立行政法人原子力安全基盤機構委託研究成 果報告書、平成23年3月

表 4.1 設計飛来物

飛来物	棒状物		板状物	塊状物	
の種類	鋼製パ	鋼製材	コンクリー	コンテナ	トラック
	イプ		ト板		
サイズ	長さ×直	長さ×幅	長さ×幅×	長さ×幅	長さ×幅
(m)	径	×奥行き	厚さ	×奥行き	×奥行き
	2×0.05	4.2×0.3	$1.5 \times 1 \times$	2.4×2.6	$5 \times 1.9 \times$
		\times 0.2	0.15	\times 6	1.3
質量	8.4	135	540	2300	4750
(kg)					

②設計飛来物の速度の設定

設計竜巻による設計飛来物の最大水平速度($_{M}V_{Hmax}$)および最大鉛直速度($_{M}V_{Vmax}$)は、衝撃荷重による影響を保守的に評価するため、知見拡充のためガイドに示される竜巻の最大風速 (V_{D})=100m/sの場合と同じ値とし、表4.2の通りとする。

表4.2 設計飛来物および飛来物速度

飛来	棒状物		板状物	塊状物	
物の	鋼製パ	鋼製材	コンクリー	コンテナ	トラック
種類	イプ		ト板		
サイ	長さ×	長さ×幅	長さ×幅×	長さ×幅×	長さ×幅×
ズ (m)	直径	×奥行き	厚さ	奥行き	奥行き
	2×0.05	4.2×0.3	$1.5 \times 1 \times$	$2.4 \times 2.6 \times$	$5 \times 1.9 \times 1.3$
		\times 0.2	0.15	6	
質量	0 4	105	E 4.0	2200	4750
(kg)	8.4	135	540	2300	4750
最大					
水平	49	57	30	60	34
速度	49	57	30	00	34
(m/s)					
最大					
鉛直	33	38	20	40	23
速度	<u> </u>	J 0	20	40	Z 3
(m/s)					

③設計飛来物の衝突方向、衝突範囲および衝撃荷重の設定

竜巻の高さ方向構造は変化せず、渦内部構造はランキン渦に従うとし、飛来物は飛散時の風力を最も大きく受ける姿勢のままで飛散していくといった、極めて単純化した仮定のもとで評価した設計竜巻を包絡する風速での設計飛来物の飛散距離および飛散高さを表4.3に示す。

表4.3 設計飛来物の飛散距離および飛散高さ*(竜巻風速:71m/s)

	飛散距離 (m)	飛散高さ (m)
鋼製パイプ	354	0.08
鋼製材	345	14
コンクリート板	389	0
コンテナ	355	0
トラック	430	0

※電力共通研究「平成24年度原子力発電所の竜巻に対する評価法 に関する研究」より作成

なお、衝撃荷重については、上記同様、電力共通研究「平成24年度原子力発電所の竜巻に対する評価法に関する研究」において、最も大きな衝撃荷重を与えるコンテナによる最大衝撃荷重1,880kNを採用し、建屋全体への適合性検討を実施する。

(4) 設計竜巻荷重の組み合わせ

評価対象施設の評価に用いる設計竜巻荷重は、設計竜巻による風圧力による荷重(W_w)、気圧差による荷重(W_p)、および設計飛来物による衝撃荷重(W_M)を組み合わせた複合荷重とし、以下の式により算定する。

 $W_{T1} = W_P$

 $W_{T2} = W_W + 0.5 \cdot W_P + W_M$

 W_{T1} 、 W_{T2} : 設計竜巻による複合荷重

Ww: 設計竜巻の風圧力による荷重

W_p: 設計竜巻の気圧差による荷重

W_M: 設計飛来物による衝撃荷重

4.3.2 設計竜巻荷重と組み合わせる荷重の設定 設計竜巻荷重と組み合わせる荷重は、以下のとおりとする。

(1)評価対象施設に常時作用する荷重、運転時荷重 評価対象施設により、常時作用する荷重(自重、死荷重、活荷 重)を適切に組み合わせる。

(2) 竜巻以外の自然現象による荷重

竜巻と同時に発生する雷、雪、雹、大雨については、以下の理 由によりプラントへの影響が相乗しないため、考慮しない。

① 雷

竜巻は建屋、構築物、および設備(系統・機器)に対する風荷重、気圧差荷重および飛来物の衝撃荷重であるが、落雷は雷撃であり影響モードが異なることから、竜巻との組合せは考慮しない。

なお、避雷針の固定ボルトの強度は竜巻の風荷重を上回るため、その機能を喪失しない。

② 雪

冬期、日本海で発生した海上竜巻が襲来する場合は竜巻通過前後に降雪を伴う可能性はあるが、竜巻渦の周辺は上昇気流であるため、竜巻通過時に雪は降らない。竜巻通過前に積った雪は竜巻の風により吹き飛ばされ、プラントへの影響は生じないことから、竜巻との組合せは考慮しない。

③ 霜

電は発達した積乱雲の中で生じる。しかし日本海側で発生する冬期季節風吹き出しに伴って発生する海上竜巻では、大気の気温が低く降雪粒子の融解が生じないため、降雹はほとんど見られていない。冬期以外で仮に雹が形成されたとしても、積乱雲の構造から、上昇流域である竜巻本体周辺では降雹は生じない。竜巻通過前に降雹があっても、竜巻の風により吹き飛ばさ

れ、プラントへの影響は生じないことから竜巻との組合せは考慮しない。

4) 大雨

竜巻は上昇気流であるため、竜巻通過時に雨は降らない。竜 巻通過前後に雨が降ってもプラントへの影響は建屋への浸水で あり、影響モードが異なることから、竜巻との組合せは考慮し ない。

また、竜巻の発生頻度は小さいことから、竜巻と同時に発生が 想定されない自然現象との組み合わせは考慮しない。

(3) 設計基準事故時荷重

竜巻の発生頻度は小さいことから、設計基準事故時荷重との組 み合わせは考慮しない。

4.4 施設の構造健全性評価結果

4.4.1 概要

設計竜巻荷重およびその他組み合わせ荷重を適切に組み合わせた設計荷重に対して、評価対象施設、あるいはその特定の区画 (注 4.1)の構造健全性が維持されて安全機能が維持されること を確認する。

(注 4.1) 竜巻防護施設を内包する区画。

4.4.2 建屋、構築物の構造健全性の確認結果

設計荷重に対して、建屋・構築物等の構造健全性が維持されて 安全機能が維持されることを確認した。

(1)設計荷重によって施設に生じる変形・応力等の算定 原子炉格納容器、原子炉周辺建屋および制御建屋に対し、建屋 の形状や配置状況を反映した受風面積、形状係数等を考慮した設計 竜巻による複合荷重 W_{T1}、W_{T2}を作用させ、評価対象施設に生じる以下の変形を算定した。

①鉄筋コンクリート造部分

設計竜巻による複合荷重により生じるせん断応力を算出し、 地震応答解析モデルに適用しているせん断力の復元特性 (Q-γ 関係)よりせん断歪度を算定した。

② 鉄骨造部分

設計竜巻による複合荷重により生じるせん断応力を算出し、 地震応答解析モデルに適用している荷重変形関係 (Q-δ 関係)か ら得られる水平変位より層間変形角を算定した。

(2) 構造健全性の確認

- ① 竜巻防護施設
- 1) 鉄 筋 コンクリート造部分

地震応答解析モデルに適用しているせん断力の復元特性($Q-\gamma$ 関係)より算定したせん断歪度について、鉄筋コンクリート造耐震壁の最大応答せん断ひずみ度の許容限界値 $2,000\,\mu^{**5}$ との比較により十分な安全余裕を有していることから構造健全性を確認した。

※5:原子力発電所耐震設計技術規程(JEAC4601-2008)に示されている、Sクラスの建物・構築物の鉄筋コンクリート造耐震壁に対する基準地震動Ssによる各層の鉄筋コンクリート造耐震壁の最大応答せん断ひずみ度の許容限界値。

2) 鉄骨造部分

地震応答解析モデルに適用している荷重変形関係(Q-δ関係) より算定した層間変形角について、許容限界値120分の1*6との 比較により十分な安全余裕を有していることから構造健全性を 確認した。 ※6:建築基準法施行令第82条の2に示されている、当該層間変 位の当該各階の高さに対する割合の許容限界値。

- ② 竜 巻 防 護 施 設 に 対 す る 波 及 的 影 響
- 1)波及的影響を及ぼし得る施設の評価

竜巻防護施設(原子炉格納容器、原子炉周辺建屋、制御建屋)に隣接してタービン建屋があるが、当該建屋は建築基準法による速度圧設計(300kg/m²)で設計しており、これは設計風速で69.3m/s相当であることから、設計竜巻により損壊しない。従って、竜巻防護施設の安全機能に影響を与えない。

- 2) 設計飛来物の評価
- a. 鉄筋コンクリート造部分

設計飛来物が竜巻防護施設に衝突しても、建屋の外壁や屋根 スラブの壁厚が裏面剥離・貫通を防ぐために必要な壁厚を確保 していることを確認した。

b. 鉄骨造部分

設計飛来物が鋼構造部分(燃料取扱建屋)の外壁に衝突した場合、貫通することから、竜巻防護施設である使用済燃料ピット中の燃料集合体への影響確認を行った。

飛来物が使用済燃料ピットに入った場合でも、燃料が破損しないことを確認した。

なお、上記評価について、知見拡充による設計竜巻100m/sでも実施し、竜巻防護施設に安全機能に影響を与えないことを確認している。

添付資料4:設計竜巻に対する建屋の構造健全性評価結果

添付資料5:知見拡充で使用する設計竜巻に対する建屋の構造健全性 評価結果

4.4.3 設備の構造健全性の確認結果

設計荷重に対して、設備(構造・機器)の構造健全性が維持されており、安全機能が維持されることを確認した。

(1) 設計荷重によって施設に生じる変形・応力等の算定

① 海水ポンプ

海水ポンプに対し、設計竜巻による複合荷重W_{T1}、W_{T2}を作用させ発生応力を算定した。

② 排気筒

排気筒に対し、設計竜巻による複合荷重W_{T1}、W_{T2}を作用させ発生応力を算定した。

(2)構造健全性の確認

- ① 竜巻防護施設の評価
- a. 海水ポンプ

設計竜巻による気圧差荷重 (W_p) ならびに風圧力による荷重及び気圧差荷重による複合荷重 $(W_w+0.5W_p)$ に対する海水ポンプ及びモータの基礎ボルト、モータ取付ボルト等に発生する応力評価を行い、健全であることを確認した。

なお、後述する設計飛来物の評価結果より、海水ポンプへの 衝突は設計上考慮すべき頻度(10⁻⁷/年)を十分下回るため、 飛来物による衝撃荷重(W_M)は評価しない。

b. 排気筒

設計竜巻による気圧差荷重(W_p)ならびに風圧力による荷重及び気圧差荷重による複合荷重(W_w +0.5 W_p)に対する排気筒の丸ダクトと角ダクトに発生する応力評価を行い、健全であることを確認した。

なお、設計竜巻による飛来物の飛散高さは排気筒の高さまで浮き上がらないことから、飛来物による衝撃荷重(W_M)は評価しない。

② 竜巻防護施設に対する波及的影響

- 1)波及的影響を及ぼし得る施設の評価
 - a. タービン建屋

竜巻防護施設(原子炉格納容器、原子炉周辺建屋、制御建屋) に隣接してタービン建屋があるが、当該建屋は建築基準法による速度圧設計(300kg/m²)で設計しており、これは設計風速で 69.3m/s相当であることから、設計竜巻により損壊しない。従って、竜巻防護施設の安全機能に影響を与えない。

b. 海水ポンプ室クレーン

海水ポンプ室クレーンの高さ(16m)と海水ポンプ室クレーン 係留位置から海水ポンプまでの距離(20m)を比較することによ り、海水ポンプに影響を与えないことを確認した。

c. 換気空調設備

換気空調設備は、外気と繋がっており気圧差荷重の影響を受けると想定される。波及的影響として耐震Sクラス設備を内包する区画の換気・冷却等を行う換気空調設備について、排気筒(建屋内)、外気と繋がるダクト、外気との隔離箇所(ダンパ、バタフライ弁)、外気との隔離箇所までに設置されているファンについて評価を行い、安全機能が維持できることを確認した。

2) 設計飛来物の評価

a. 海水ポンプ

設計飛来物が海水ポンプに衝突する影響度評価を行う。 設計基準事象として評価されているタービンミサイルや航空 機落下は頻度的な評価となっており、安全上重要な機器が破損する確率が10⁻⁷/年以下となることが安全上の判断基準となっている。またASME/ANS PRA標準においても考慮する起因事象の発生頻度について10⁻⁷/年以下のものは除外してもよいとする例もある。これらの事から飛来物が海水ポンプに衝突する影響度評価についても10⁻⁷/年以下を安全上の判断基準として設定する。なお、評価方法については既知のタービンミサイル評価(「タービンミサイル評価について」原子炉安全専門審査会(昭和52年7月20日))を準用する。

海水ポンプに対して、飛来物による影響頻度を評価したところ、設計上考慮すべき頻度(10⁻⁷/年)を十分下回るため、海水ポンプへの飛来物は影響がなく安全機能は維持される。

飛来物への対応として、海水ポンプ室設置付近への車の乗入れ管理、資機材保管管理等を行い、竜巻に対する備えの万全を期する。

b. 排 気 筒

設計竜巻による飛来物が、排気筒の高さまで浮き上がらず、 排気筒に衝突し得ないことから、排気筒への飛来物の影響はない。

なお、上記評価について、知見拡充による設計竜巻100m/sでも実施し、竜巻防護施設の安全機能が維持されることを確認している。

添付資料6:設計竜巻に対する設備の構造健全性評価結果

添付資料7: 知見拡充で使用する設計竜巻に対する設備の構造健全性 評価結果

4.5 その他の確認事項

ガイド案 解説 4.3. 1.2.3 において要求がある「圧力差の影響を受け得る計器類」については、評価対象である耐震 S クラスの計器類は、全て建屋内に設置されており、竜巻により建屋内・外で差圧が発生した場合にその影響を受けるものは無い。(海水ポンプ関連で屋外設置の耐震 S クラスの計器なし)

また、4.4 で実施した評価以外の確認事項は存在しない。中央制御室及び非常用発電機の設備に繋がる給排気ダクト類は、風圧力の影響を受けない構造となっている。

5. 竜巻随伴事象に対する評価

竜巻随伴事象として想定される事象について影響評価を行い、 以下のとおり竜巻防護施設の安全機能が維持されることを確認し た。

(1) 火災

設計竜巻により、発電所敷地内の危険物タンクにおいて火災が発生した場合を想定したとしても、原子炉施設外壁の温度が、許容温度を超えないため、竜巻防護施設に熱影響を及ぼすことがないことから、竜巻防護施設の安全機能維持に影響は与えない。(注42)

(注 4. 2) 外部火災影響報告書 添付資料 2 - 1 「大飯発電所 3, 4 号機の敷地内におけるタンク火災による影響評価について」

(2)溢水

設計竜巻による燃料取扱建屋の構造健全性を確認した結果、燃料取扱建屋は損壊しないため、気圧差による使用済み燃料プールの水の流出は生じない。また、設計竜巻により、発電所敷地内の屋外タンクの倒壊による水の流出が発生した場合を想定したとしても、津波対策として水密構造としているため、竜巻防護施設の安全機能に影響を与えることはない。

(3)外部電源喪失

設計竜巻と同時に発生する雷、ダウンバーストにより外部電源が喪失した場合でも、非常用ディーゼル発電機は原子炉周辺建屋内に収納してあり、設計竜巻による風圧力、気圧差による圧力、飛来物による機関への影響はない。吸排気については外気と繋がっているが、短時間の気圧差による圧力による影響はない。このことから、非常用ディーゼル発電機は安全機能を維持しており、竜巻防護施設の安全機能の維持に影響は与えない。

竜巻検討地域において発生した竜巻

竜巻検討地域において 1961 年~2012 年 6 月に発生した竜巻の一覧を下表に示す。

表 1 竜巻検討地域において 1961 年~2012 年 6 月に発生した竜巻

	発生日時	発生場所緯度	発生場所経度	F スケール	現象区別
1	1961年01月24日13時50分	33度54分8秒	130度56分12秒	F1	竜巻
2	1962年09月28日14時20分	45度13分30秒	141度15分25秒	F2	竜巻
3	1965年09月30日02時35分	39度44分33秒	140度4分46秒	F1	竜巻
4	1005年00月20日02時00八	20 度 10 八 20 秒	140 度 0 八 10 秒	E0 2 E1	竜巻または
4	1965年09月30日03時00分	39度19分29秒	140度0分10秒	F0~F1	タ゛ウンハ゛ースト
5	1968年01月08日09時50分	37度13分48秒	138度19分22秒	F1	竜巻
6	1969年06月22日09時00分	34度37分30秒	131度36分10秒	F1	竜巻
7	1969年11月18日07時08分	38度54分31秒	139度50分7秒	F1	竜巻
8	1971年02月01日00時20分	36度41分10秒	136度40分30秒	F1	竜巻
9	1971年10月17日05時00分	44度21分23秒	141度41分30秒	F0~F1	竜巻
10	1971年10月17日05時00分	44度21分23秒	141度41分30秒	F2	竜巻
11	1972年11月21日17時05分	36度53分27秒	137度24分57秒	F1	竜巻
12	1973年05月21日16時30分	36度49分56秒	136度44分45秒	F0~F1	竜巻
13	1973年09月27日23時00分	45度26分20秒	141度2分10秒	F1	竜巻
14	1973年10月22日13時20分	39度41分41秒	140度4分20秒	F1	竜巻
15	1974年08月08日05時05分	40度16分53秒	140度3分24秒	F0~F1	竜巻
16	1974年10月03日19時05分	42度11分20秒	139度31分0秒	F1~F2	竜巻
17	1974年10月20日15時00分	41度47分45秒	140度7分47秒	F1~F2	竜巻
18	1975年05月31日18時10分	35度26分6秒	132度37分57秒	F0~F1	竜巻
19	1975年05月31日18時10分	35度25分57秒	132度37分42秒	F2	竜巻
20	1975年05月31日18時40分	35度25分8秒	132度37分53秒	F0~F1	竜巻
21	1975年09月08日01時30分	42度12分52秒	139度32分58秒	F1~F2	竜巻
22	1977年01月13日01時30分	36度34分5秒	136度34分0秒	F0~F1	竜巻
23	1978年08月14日10時40分	45度5分0秒	141度38分0秒	不明	竜巻
24	1979年10月31日13時00分	37度8分21秒	136度41分2秒	F0~F1	竜巻
25	1979年11月02日01時58分	41度30分7秒	140度1分6秒	F2	竜巻
26	1984年11月19日22時00分	35度26分4秒	133度19分22秒	F1	竜巻
27	1987年01月11日01時32分	40度2分27秒	139度56分19秒	F0~F1	竜巻
28	1987年01月11日02時00分	40度6分9秒	139度57分57秒	F1	竜巻

	発生日時	発生場所緯度	発生場所経度	F スケール	現象区別
29	1989年03月16日19時20分	35度24分0秒	132度40分0秒	F2	竜巻
30	1990年04月06日02時55分	37度12分10秒	136度40分56秒	F2	竜巻
31	1991年01月13日14時48分	38度1分25秒	138度12分20秒	不明	竜巻
32	1991年02月15日11時00分	35度33分54秒	135度52分53秒	F1	竜巻
33	1991年09月17日08時50分	42度49分12秒	140度12分50秒	不明	竜巻
34	1991年12月11日20時10分	36度35分59秒	136度38分0秒	F1	竜巻
35	1992年09月13日08時50分	45度26分50秒	141度40分0秒	不明	竜巻
36	1992年09月17日09時05分	43度50分50秒	141度29分55秒	F1	竜巻
37	1992年09月17日09時05分	43度50分50秒	141度29分55秒	不明	竜巻
38	1993年09月26日15時52分	43度57分17秒	141度36分54秒	不明	竜巻
39	1993年10月17日09時30分	36度55分9秒	136度43分51秒	不明	竜巻
40	1993年10月23日17時00分	38度5分30秒	138度12分30秒	不明	竜巻
41	1993年11月24日13時50分	37度13分27秒	138度12分49秒	不明	竜巻
42	1994年03月26日11時40分	38度48分32秒	139度46分19秒	F1	竜巻
43	1994年09月01日16時00分	37度59分6秒	139度2分56秒	不明	竜巻
44	1995年12月01日13時51分	36度26分13秒	136度25分3秒	不明	竜巻
45	1996年09月05日10時20分	39度15分18秒	139度54分1秒	不明	竜巻
46	1996年10月08日23時07分	44度43分7秒	141度48分15秒	F1	竜巻
47	1996年11月30日07時05分	37度23分39秒	138度34分14秒	F1	竜巻
48	1997年01月22日09時20分	37度54分58秒	139度2分0秒	F0	竜巻
49	1998年09月24日15時00分	35度38分26秒	134度55分31秒	不明	竜巻
50	1998年10月31日08時40分	37度19分6秒	136度42分10秒	不明	竜巻
51	1998年11月15日22時30分	38度56分40秒	139度49分22秒	F1	竜巻
52	1999年10月08日09時30分	36度43分56秒	136度40分18秒	不明	竜巻
53	1999年10月29日21時25分	40度13分10秒	140度4分11秒	F0~F1	竜巻
54	1999年11月25日15時40分	40度20分50秒	140度1分37秒	F1~F2	竜巻
55	2000年07月25日06時20分	36度8分1秒	136度4分13秒	不明	竜巻
56	2000年07月25日06時30分	36度13分26秒	136度8分2秒	不明	竜巻
57	2001年06月01日13時20分	40度32分7秒	139度56分44秒	F1	竜巻
58	2001年06月19日14時50分	35度37分58秒	136度3分11秒	F1	竜巻
59	2002年09月23日14時30分	36度58分15秒	137度33分15秒	F0~F1	竜巻
60	2002年09月24日13時15分	39度30分6秒	140度4分56秒	F1	竜巻
61	2002年11月04日11時20分	36度21分14秒	136度19分32秒	F0	竜巻
62	2002年11月05日10時30分	35度38分45秒	135度56分16秒	不明	竜巻

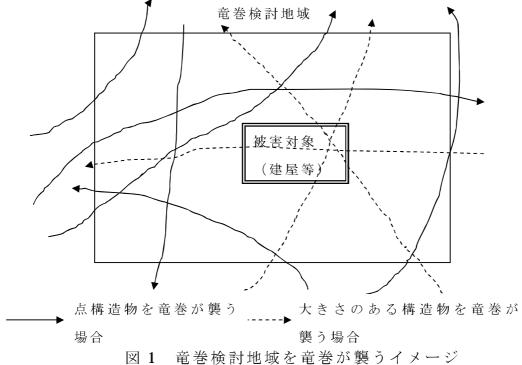
	発生日時	発生場所緯度	発生場所経度	F スケール	現象区別
63	2003年10月18日16時25分	36度11分51秒	136度7分2秒	不明	竜巻
64	2004年08月15日12時10分	45度27分22秒	141 度 2 分 1 秒	F0 未満	竜巻
65	2004年09月16日14時00分	33度53分13秒	130度53分24秒	F1	竜巻
66	2005年01月12日07時50分	35度32分0秒	134度3分30秒	不明	竜巻
67	2005年11月18日13時00分	36度38分59秒	136度38分52秒	不明	竜巻
68	2005年12月05日11時50分	35度23分26秒	132度42分50秒	F1	竜巻または ダウンバースト
69	2005年12月25日19時10分	38度51分16秒	139度47分16秒	F1	竜巻
70	2006年11月09日12時05分	42度3分31秒	139度26分50秒	F1	竜巻
71	2007年08月24日08時20分	38度47分40秒	139度42分0秒	不明	竜巻
72	2007年08月24日08時20分	38度47分40秒	139度42分0秒	不明	竜巻
73	2007年10月01日14時25分	43度23分0秒	140度26分30秒	不明	竜巻
74	2007年10月01日14時27分	43度17分8秒	140度20分16秒	不明	竜巻
75	2007年10月01日15時30分	42度26分26秒	139度47分30秒	不明	竜巻
76	2007年10月04日13時36分	44度53分0秒	141度41分0秒	不明	竜巻
77	2007年10月04日16時30分	42度27分15秒	139度50分20秒	不明	竜巻
78	2007年10月11日09時55分	40度47分21秒	140度7分54秒	不明	竜巻
79	2007年10月11日10時25分	40度47分21秒	140度7分54秒	不明	竜巻
80	2007年10月16日15時23分	35度36分35秒	133度5分10秒	不明	竜巻
81	2007年11月22日09時00分	36度54分32秒	137度24分56秒	不明	竜巻または 漏斗雲
82	2007年12月02日01時30分	38度54分26秒	139度50分18秒	F0	竜巻
83	2008年06月01日12時50分	40度23分20秒	139度58分55秒	不明	竜巻
84	2008年07月30日08時03分	35度34分20秒	134度13分5秒	不明	竜巻
85	2008年07月30日08時28分	35度33分5秒	134度10分56秒	不明	竜巻または 漏斗雲
86	2008年07月30日08時28分	35度33分5秒	134度10分56秒	不明	竜巻または 漏斗雲
87	2008年07月30日08時41分	35度33分36秒	134度11分26秒	不明	竜巻または 漏斗雲
88	2008年07月30日08時55分	35度34分48秒	134度9分30秒	不明	竜巻
89	2008年07月30日09時01分	35度34分16秒	134度9分26秒	不明	竜巻
90	2008年07月30日09時18分	35度34分6秒	134度8分16秒	不明	竜巻
		38度55分10秒	139度48分31秒		竜巻

	発生日時	発生場所緯度	発生場所経度	F スケール	現象区別
92	2008年08月15日16時20分	35度30分51秒	133度59分38秒	F0 以下	竜巻
93	2008年09月14日08時33分	45度28分53秒	141度50分14秒	不明	竜巻
94	2008年09月14日08時47分	45度29分22秒	141度37分30秒	不明	竜巻
95	2008年09月21日11時07分	38度28分16秒	139度28分39秒	不明	竜巻
96	2008年10月01日11時55分	40度1分15秒	139度45分45秒	不明	竜巻
97	2008年10月01日11時55分	40度0分37秒	139度44分9秒	不明	竜巻
98	2008年10月10日09時05分	39度47分5秒	140度0分55秒	不明	竜巻
99	2008年10月10日10時20分	39度44分36秒	140度0分23秒	不明	竜巻
100	2008年10月10日12時07分	39度40分20秒	140度1分7秒	不明	竜巻
101	2008年10月11日00時45分	41度51分7秒	140度7分37秒	F0	竜巻
102	2008年10月15日13時48分	37度51分36秒	138度54分57秒	F0	竜巻
103	2008年10月15日14時47分	38度40分48秒	139度34分48秒	不明	竜巻
104	2008年10月15日16時10分	38度22分2秒	139度26分44秒	不明	竜巻
105	2008年10月26日18時30分	37度56分11秒	139度6分24秒	F0	竜巻
106	2008年10月27日14時55分	36度9分11秒	136度4分16秒	不明	竜巻
107	2008年10月30日12時33分	35度32分51秒	134度12分26秒	不明	竜巻
108	2008年10月30日12時38分	35度35分1秒	134度17分35秒	F0	竜巻
109	2008年10月30日12時50分	35度34分34秒	134度16分10秒	不明	竜巻
110	2008年10月31日07時30分	37度7分33秒	136度42分25秒	不明	竜巻
111	2008年11月02日16時20分	37度44分35秒	138度48分7秒	不明	竜巻
112	2008年11月19日08時36分	36度27分26秒	136度23分41秒	不明	竜巻または 漏斗雲
113	2008年11月19日11時45分	37度55分41秒	139度1分4秒	不明	竜巻
114	2008年11月20日08時30分	37度26分19秒	138度34分17秒	不明	竜巻
115	2008年11月20日08時40分	36度56分37秒	136度44分33秒	不明	竜巻
116	2008年11月20日08時42分	36度56分37秒	136度44分33秒	不明	竜巻
117	2008年11月20日08時42分	36度56分37秒	136度44分33秒	不明	竜巻
118	2008年11月20日09時40分	37度27分8秒	138度34分43秒	不明	竜巻
119	2008年11月23日10時20分	36度59分16秒	136度46分25秒	F0~F1	竜巻
120	2009年01月24日11時05分	42度5分27秒	139度23分57秒	不明	竜巻
121	2009年01月24日11時15分	42度0分27秒	139度27分46秒	不明	竜巻
122	2009年02月07日20時15分	39度41分6秒	140度5分11秒	F0	竜巻
123	2009年03月14日17時26分	35度35分53秒	134度13分28秒	不明	竜巻または 漏斗雲

	発生日時	発生場所緯度	発生場所経度	F スケール	現象区別
124	2009年08月23日18時37分	38度36分36秒	139度34分27秒	不明	竜巻
125	2009年08月23日18時51分	38度37分26秒	139度35分7秒	不明	竜巻
126	2009年09月10日13時30分	37度25分26秒	138度32分38秒	不明	竜巻
127	2009年09月10日13時35分	37度25分26秒	138度32分38秒	不明	竜巻
128	2009年09月13日03時40分	38度34分7秒	139度33分9秒	F0	竜巻
129	2009年10月04日12時50分	39度39分55秒	140度4分26秒	不明	竜巻
130	2009年10月27日13時10分	37度2分7秒	137度49分14秒	不明	竜巻
131	2009年10月30日07時26分	40度30分18秒	139度59分57秒	F0	竜巻
132	2009年10月30日09時20分	40度9分56秒	140度0分26秒	F1	竜巻
133	2009年11月03日06時25分	36度52分52秒	137度21分58秒	不明	竜巻または
100	2000 11 / 100 00 / 1 20 / 1	00/2 02 37 02 47	137 及 21 分 36 秒	1.01	漏斗雲
134	2009年11月03日06時37分	36度54分8秒	137度22分38秒	不明	竜巻
135	2009年11月03日06時38分	36度54分8秒	137度22分38秒	不明	竜巻
136	2009年11月03日06時39分	36度53分27秒	137度22分8秒	不明	竜巻
137	2009年11月03日06時43分	36度54分56秒	137度23分51秒	不明	竜巻
138	2009年12月18日02時00分	36度34分20秒	136度33分53秒	F0	竜巻
139	2009年12月18日11時03分	35度34分22秒	134度14分26秒	不明	竜巻または
100					漏斗雲
140	2010年08月25日12時30分	43度57分25秒	141度35分10秒	不明	竜巻
141	2010年08月25日13時05分	43度59分0秒	141度39分15秒	F0 未満	竜巻
142	2010年09月07日03時45分	39度46分12秒	140度3分59秒	F0	竜巻
143	2010年09月16日14時30分	35度37分0秒	134度24分5秒	不明	竜巻
144	2010年09月17日10時45分	37度38分56秒	138度44分42秒	不明	竜巻
145	2010年09月17日10時55分	37度38分3秒	138度45分37秒	F0 以下	竜巻
146	2010年10月15日04時30分	37度10分5秒	136度40分32秒	F0	竜巻
147	2010年10月15日17時00分	38度3分23秒	139度19分23秒	F0	竜巻
148	2010年10月15日17時05分	38度4分24秒	139度21分9秒	F1	竜巻
149	2010年10月17日12時40分	40度22分52秒	139度59分42秒	F0	竜巻
150	2010年10月17日13時20分	39度51分44秒	140度1分32秒	F0	竜巻
151	2010年10月26日07時00分	43 度 24 分 30 秒	141度22分0秒	不明	竜巻
152	2010年10月26日07時05分	43度8分28秒	140度23分6秒	不明	竜巻
153	2010年10月26日07時10分	43度24分0秒	141度24分40秒	不明	竜巻
154	2010年10月26日07時10分	43度23分40秒	141度25分50秒	F0 未満	竜巻
155	2010年10月26日07時38分	43度22分30秒	141度24分15秒	不明	竜巻

	発生日時	発生場所緯度	発生場所経度	F スケール	現象区別
156	2010年10月26日08時10分	43度8分38秒	140度23分6秒	不明	竜巻
157	2010年10月26日15時50分	41度51分39秒	140度6分25秒	不明	竜巻
158	2010年11月12日13時15分	40度19分0秒	140度1分47秒	F0	竜巻
159	2010年11月29日09時20分	37度0分3秒	136度46分18秒	F0	竜巻
160	2010年11月29日12時18分	36度15分21秒	136度6分51秒	不明	竜巻または
100			100 % 0 % 01 %	1 24	漏斗雲
161	2010年11月29日12時24分	36度15分23秒	136度6分59秒	不明	竜巻
162	2010年11月29日12時25分	36度15分17秒	136度6分37秒	不明	竜巻
163	2010年12月03日15時30分	37度50分58秒	138度55分4秒	F0	竜巻
164	2010年12月03日15時36分	37度52分15秒	138度58分57秒	F0 未満	竜巻
165	2010年12月03日15時45分	37度53分11秒	139度2分24秒	F1	竜巻
166	2010年12月09日17時10分	37度12分36秒	138度18分7秒	F0~F1	竜巻
167	2010年12月15日07時56分	36度51分20秒	137度23分5秒	不明	竜巻
168	2010年12月16日08時00分	38度2分43秒	138度37分10秒	不明	竜巻
169	2010年12月17日10時20分	42度52分12秒	140度18分46秒	不明	竜巻
170	2010年12月18日07時18分	35度34分17秒	134度10分6秒	不明	竜巻または
					漏斗雲
171	2010年12月24日15時57分	35度34分17秒	134度10分4秒	不明	竜巻
172	2010年12月27日01時30分	37度1分3秒	136度44分37秒	F0	竜巻
173	2010年12月29日13時50分	35度46分56秒	135度14分0秒	不明	竜巻
174	2010年12月29日14時00分	35度46分54秒	135度12分6秒	不明	竜巻
175	2011年01月03日14時52分	38度3分48秒	139度16分7秒	不明	竜巻
176	2011年03月09日11時30分	36度13分1秒	136度11分51秒	F0 未満	竜巻または 漏斗雲
177	2011年03月09日17時25分	35度34分6秒	134度8分57秒	不明	竜巻
178	2011年03月31日09時50分	37度10分31秒	138度13分58秒	F0 未満	竜巻または
170			100 % 10 % 00 %	2 0 21 4114	漏斗雲
179	2011年08月13日17時32分	40度29分8秒	139度53分20秒	不明	竜巻
180	2011年08月20日18時40分	43度4分56秒	140度23分57秒	不明	竜巻
181	2011年08月20日18時45分	43度4分52秒	140度24分37秒	不明	竜巻
182	2011年08月22日12時05分	45度19分0秒	140度58分47秒	不明	竜巻または
102	2011 T 00 /1 22 H 12 W 00 /1	40 /× 10 /J 0 //2	140 及 38 分 47 秒	1.01	漏斗雲
183	2011年09月20日05時50分	45度25分27秒	141度41分35秒	不明	竜巻
184	2011年11月15日16時10分	37度2分0秒	137度42分0秒	不明	竜巻

	発生日時	発生場所緯度	発生場所経度	F スケール	現象区別
185	2011年11月15日16時12分	37度2分0秒	137度42分0秒	不明	竜巻
186	2011年11月15日16時14分	37度2分0秒	137度42分0秒	不明	竜巻
187	2011年11月15日16時15分	37度2分0秒	137度42分0秒	不明	竜巻
188	2011年11月15日16時20分	37度2分0秒	137度42分0秒	不明	竜巻
189	2011年11月24日12時10分	36度56分25秒	137度23分30秒	不明	竜巻または 漏斗雲
190	2011年11月25日06時27分	36度53分45秒	137度23分0秒	不明	竜巻または 漏斗雲
191	2011年12月24日12時10分	36度48分30秒	136度42分0秒	不明	竜巻
192	2012年02月01日04時15分	35度21分41秒	132度40分40秒	F0	竜巻


気象庁 「竜巻等の突風データベースより作成」

竜巻最大風速のハザード曲線の算定の仕方について

1. 概要

竜巻最大風速のハザード曲線は、建屋等が竜巻により被害を受ける 確率と、被害を受けた時にある風速を超える確率を掛け合わせる条件付 確率(竜巻被害発生時の風速の年超過確率)として求める。

その際、竜巻により被害を受ける領域は、竜巻検討地域において建 屋等の構造物が無い箇所を襲う領域と、建屋等を襲う領域の双方に分け て考慮することとし、前者を点構造物についての竜巻被害発生時の風速 の年超過確率、後者を大きさのある構造物についての竜巻被害発生時の 風速の年超過確率として算定した上で、両者を足し合わせることにより、 竜巻最大風速のハザード曲線を求める。

2. 竜巻被害発生確率の評価方法

竜巻検討地域で1961年から2012年6月の間に発生した竜巻は192個と 少なく、その大きさの最大はF2である。このデータを基に大きな風速ま で与えるハザード曲線を評価するのは精度に問題があることから、竜巻検討地域の特性は、年発生個数のみに反映することとし、被害面積や被害長さの期待値、ある竜巻が発生した場合の風速の年超過確率などの特性は日本全域を対象としたデータ(1961年~2010年7月)に基づいて評価された特性を使用することとした。竜巻発生個数に係る評価においては、F0未満、不明を含めてすべてを発生個数としてカウントした。風速を伴う評価においては、不明は含めず、F0未満、F0以下およびF0はF0、F0~F1およびF1はF1、F1~F2およびF2はF2、F2~F3およびF3はF3として取り扱った。

以下に、点構造物と大きさのある構造物の竜巻被害発生時の風速の年 超過確率の求め方を示す。

①点構造物の竜巻被害発生時の風速の年超過確率 P_P(V≥V₀)

$$P_P(V \ge V_0) = P_P \times P_P(V \ge V_0 \mid s) \quad \bullet \quad \bullet \quad (1)$$

竜巻検討地域が被害を受ける確率と、ある竜巻による被害が発生した時に、風速がある風速 V_a を超える確率を掛け合わせる。

ここで、

 $P_P = E[n] \cdot E[A_T] / A_R$: 竜巻検討地域(点構造物)が被害を受ける確率

E[n]: 竜巻検討地域での年発生個数の期待値

 $E[A_T]$: ある竜巻が発生した際の被害面積の期待値(日本全域対象に評価された値)

A,: 竜巻検討地域面積

 $P_p(V \ge V_0 \mid s)$: 竜巻発生時に風速がある風速 V_o を超える確率(日本全域対象に評価された値)

②大きさのある構造物の竜巻被害発生時の風速の年超過確率 $P_L(V \ge V_0)$ $P_L(V \ge V_0) = P_L \times P_L(V \ge V_0 \mid s)$ ・・・(2)

大きさのある構造物が被害を受ける確率と、構造物が被害を受けた時に竜巻がある風速 V_{o} を超える確率を掛け合わせて評価を行う。

ここで、

 $P_L = E[n] \cdot D \cdot E[L] / A_R$

E[n]: 竜巻検討地域での年発生個数

D: 評価対象の建物等の代表幅

E[L]: ある竜巻が発生した際の通過長さの期待値(日本全域対象に評価 された値)

A_n: 竜巻検討地域面積

 $P_L(V \ge V_0 \mid s)$:構造物が被害を受けた時に、風速がある風速 V_o を超える確率 (日本全域対象に評価された値)

最後に両者を足しあわせて、ハザード曲線 $P(V \ge V_0)$ を得る。

 $P(V \ge V_0) = P_P(V \ge V_0) + P_L(V \ge V_0) \cdot (3)$

3. 評価に用いた値の説明

(1) 竜巻検討地域面積 A_R

竜巻検討地域は、北海道から本州の日本海側の海岸に沿った海側 $5 \, \mathrm{km} \, \, \mathrm{e}$ 山側 $5 \, \mathrm{km} \, \, \mathrm{o}$ 地域で、その面積 $A_R \, \mathrm{d} \, \, 33$, $395 \, \mathrm{km}^2$ である。

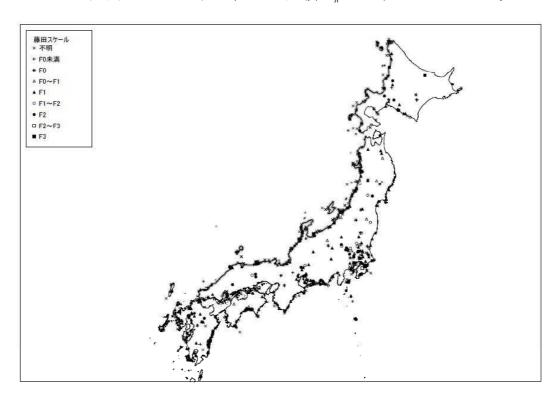
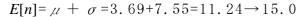
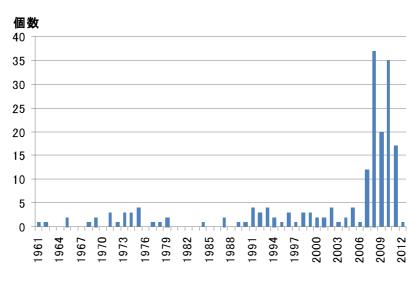




図1 竜巻検討地域および竜巻の発生状況

(2) 竜巻検討地域内で竜巻の年発生個数の期待値 E[n]

竜巻検討地域内で発生した竜巻の年発生個数分布を図 2 に示す。これを年発生数の累積頻度分布にて示すと図 3 となる。竜巻検討地域における竜巻の年発生数の分布は、平均値 3.69 個の 2 倍を超える標準偏差 7.55 個を持つ非常に偏った分布をしており、ポアソン分布を当てはめることは適さなかった。ガイド案の示すポアソン分布では平均値を期待値とみなし、そのままハザード評価をすることとなるが、竜巻検討地域における年発生数に非常に偏りのある傾向を考慮し、保守的な期待値を定めることとした。すなわち、平均値にデータの偏りの度合いを表す標準偏差を加えた平均+標準偏差の値 11.24 個より、保守的に竜巻の年発生数の期待値を 15 個とした。設定した期待値 15 個を超えるのは、52 年中 7.6%の 4 年間だけである。したがって、52 年中の 92.4%以上の年は、年間発生数が設定した値を超えることがなく、設定した期待値は十分保守的な値である。

年

果積頻度分布 1 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 30 35 40 年発生個数

図3 竜巻検討地域の年発生数の累積頻度分布

(3) 竜巻発生時の風速の年超過確率 (発生確率)

日本全域で観測された竜巻のデータをもとに、竜巻発生時の風速 の年超過確率の特性をワイブル分布に近似した曲線として評価した。 図 4 にその特性を示す。

その評価に当たって、日本で公表されている竜巻の大きさはFスケールによって表されているが、Fスケールで与えられる風速は、各Fスケールで平均時間間隔が異なっている。一方、EFスケールは、3秒平均での風速に統一されている。最大風速は平均時間に依存することから、統計的に評価する際は、平均時間が統一された風速の尺度を用いることが適している。従って、FスケールをEFスケールでの風速とし、最終的に得られたEFスケールでの最大風速をFスケール相当に換算することとした。図4の竜巻風速の年超過確率はEFスケールによる風速に基づいた特性である。

なお、Fスケールと EF スケール間の換算は「A Recommendation for an ENHANCED FUJITA SCALE」(参考) に基づいて行う。

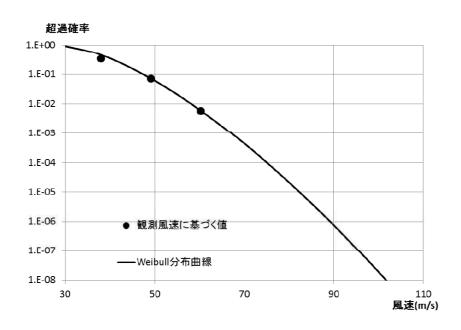


図 4 日本全域で観測されたデータを元に評価した竜巻の風速の年超過確率の特性

(4) 1つの竜巻が発生した場合の被災面積期待値 E[A_r]

日本全域で観測された竜巻のデータをもとに、被害幅と被害長さが同時に記録されている観測データより、幅×長さを被災面積として被災面積の非超過確率分布を求め対数正規分布曲線で近似を行い、スケール毎に期待値を求めた。

1つの竜巻は様々なスケールとなり得ることから、1つの竜巻が発生した場合の被災面積の期待値は、スケール毎の期待値に発生確率を乗じたものを合算することにより、日本で観測された竜巻の被災面積期待値 $E[A_{r}]$ を求めた。

 $E[A_T] = 0.585 \text{km}^2 \rightarrow 0.6 \text{km}^2$

(5) 1つの竜巻が発生した場合の通過長さの期待値 E[L]

日本全域で観測された竜巻のデータをもとに、通過長さ(被害長さ)の観測データの非超過確率分布を求め、対数正規分布曲線で近似を行い、スケール毎に期待値を求めた。

1つの竜巻は様々なスケールとなり得ることから、1つの竜巻が発生した場合の通過長さは、スケール毎の期待値に発生確率を乗じたものを合算することにより、日本で観測された竜巻の通過長さの期待値E[L]を求めた。

E[L]=3.84km $\rightarrow 4$ km

(6) 評価対象の建物等の代表幅 D

評価対象の建物等の代表幅 D は、評価対象施設の内、幅が最も大きい原子炉周辺建屋(平面=71m×98.6m、対角線長さ 121.5m)を基に、以下のとおりとした。

 $D = 150 \,\mathrm{m}$

- 4. ハザード曲線の評価
- (1) 点構造物の竜巻被害発生時の風速の年超過確率 Pp(V≥V0)

点構造物が竜巻により被害を受けて、そのときの風速が設定風速の V_o 以上になる超過確率は 3. (3)に示した $P_p(V \ge V_0 \mid s)$ に

$$P_P = 15 \times 0.6 / 33395 = 2.70 \times 10^{-4}$$

を乗じた値となる。

(2) 大きさのある構造物の竜巻被害発生時の年超過確率 P_L(V≥V₀)

大きな構造物が竜巻により被害を受けて、そのとき構造物の大きさに起因して風速が設定風速の V_o 以上になる超過確率は 3.(3)に示した $P_L(V \ge V_0 \mid s)$ に

$$P_L = 15 \times 0.15 \times 4.0/33395 = 2.70 \times 10^{-4}$$

を乗じた値となる。

(3)最大風速のハザード曲線

(1)、(2)で求めた曲線の和をFスケールに換算して算定した 竜巻最大風速のハザード曲線を図5に示す。

.----

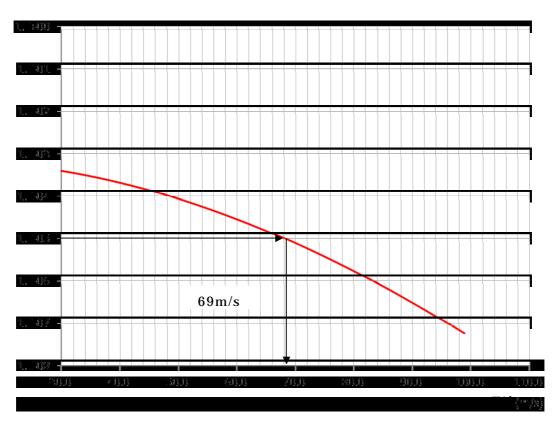
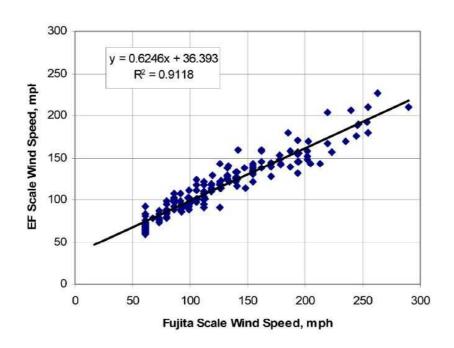



図 5 竜巻最大風速のハザード曲線

<参考>

EFスケール⇔Fスケール換算資料

 $\lceil A \rceil$ Recommendation for an ENHANCED FUJITA SCALEJ

参考図1 EFスケールとFスケールでの風速関係

参考表 1 Fスケールと EFスケールの対比表

F	ijita Scal	e	EF Scale			
1	/4-mile 風速	<u></u>	3 秒平均			
単位	mile/h	m/s	単位	mile/h	m/s	
F0	40-72	17-32	EF0	65-85	29-38	
F1	73-112	33-49	EF1	86-110	38-49	
F2	113-157	50-69	EF2	111-135	50-60	
F3	158-207	70-92	EF3	136-165	61-74	
F4	208-260	93-114	EF4	166-200	74-89	
F5	260-318	117-142	EF5	>200	>89	

狭隘地形が竜巻状旋回気流に与える影響について

数値流体計算を用いて、実スケールの単純化した狭隘地形を対象に、 竜巻状気流を再現し移動させ、地形を通過する際の渦構造の変化や最 大瞬間風速分布等を確認した。

再現した竜巻状気流は、最大風速 120m/s (平均値)、同風速半径 30m の規模で、移動速度 10m/s で地形に接近させた。単純化した狭隘地形条件のパラメータは表 1 のとおり。

大飯発電所の地形に最も近い幅 500m の谷間地形 (case5)では、谷間の奥で渦構造が消滅し、強風域が奥まで到達していないことが分かった。これは、谷間地形であることから、空気の供給がなくなり竜巻の渦構造の維持が困難となったためと考えられる。

	地形条件	高さ H(m)	幅 W(m)	奥行 D(m)
CaseO	平坦地形	_	_	<u> </u>
Case1	背後に	150	_	_
Case2	傾斜 地	250	_	_
Case3	三方を傾斜	150	1,000	1,000
Case4	地に囲まれ	250	1,000	1,000
Case5	た谷	250	500	1,000

表 1 地形条件のパラメータ

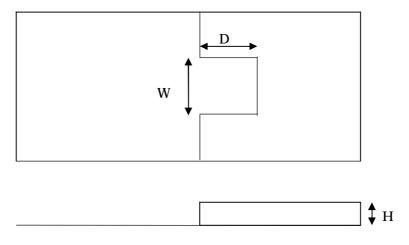


図1 地形のモデル化

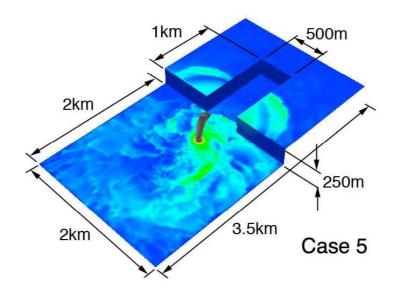


図2解析対象地形モデル

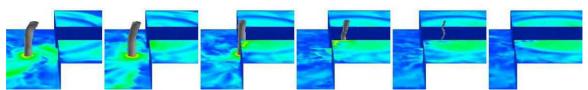


図3 地形を通過する際の渦構造の変化(等圧面と地表付近の風速)

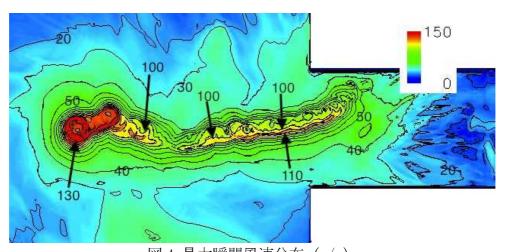
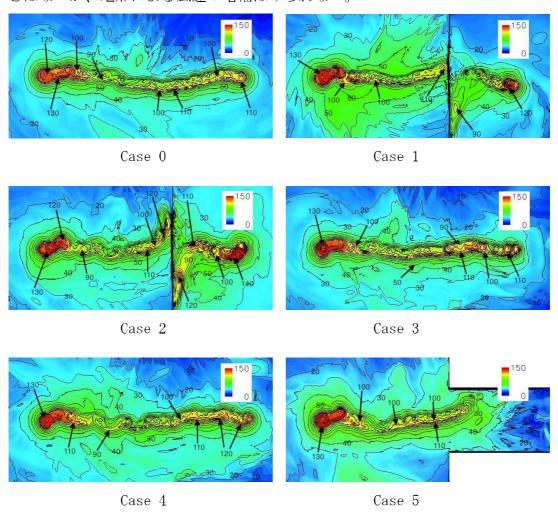


図4最大瞬間風速分布 (m/s)

(コンターラインは、最小 10m/s から 10m/s 刻み)


(注) 初期最大風速 120m/s は平均値であるため、計算開始時の最大瞬間風速と一致していない。

出典: 片岡他, 数値流体計算による狭隘地形が竜巻旋回気流に与える影響の評価; 2013 建築学会大会投稿中

<参考>

case0~5の最大瞬間風速分布を参考図1に示す。

発電所のサイトが位置する地形の底部では、case5 以外は強風域が消滅することはないが、地形による風速の増幅はみられない。

参考図1 最大瞬間風速の分布図 (コンターラインは、最小 10m/s から 10m/s 刻み)

(注) 初期の最大風速 120m/s は平均値であるため、計算開始時の最大瞬間風速 と一致していないケースがある。 設計竜巻に対する建屋、構築物等の構造健全性の確認結果

1. 概要

大飯3,4号機において、竜巻設計荷重に対して、建屋の構造健全性が維持されて安全機能が維持されることを確認した。

2. 設計竜巻の特性値

設計竜巻の特性値は表1の通りとした。

最大 移動 最大接線 最大接線 気圧 最大気圧 風速 低下率 速度 風 速 風速半径 低下量 $V_D (m/s)$ $V_{\rm T}$ (m/s $V_{Rm} (m/s)$ $R_{m}(m)$ $\Delta P(hPa)$ $(dp/dt)_{max}$) (hPa/s) 10 59 30 43 15 69

表1 設計竜巻の特性値

3. 設計飛来物の諸元

設計飛来物の諸元は表 2 の通りとした。

表2 設計飛来物の諸元

飛来物	棒状物		板状物	塊状物	
の種類	鋼製パ	鋼製材	コンクリ	コンテナ	トラック
	イプ		ート板		
サイズ	長さ×	長さ×幅	長さ×幅	長さ×幅	長さ×幅
(m)	直径	×奥行き	×厚さ	×奥行き	×奥行き
	2×0.05	4.2×0.3	$1.5 \times 1 \times$	2.4×2.6	$5 \times 1.9 \times$
		×0.2	0.15	$\times 6$	1.3
質 量	8.4	135	540	2300	4750
(kg)	0.1	100	0.10	2000	1100
飛散					
距離 **1	354	345	389	355	430
(m)					
飛散					
高さ※1	0.08	14	0	0	0
(m)					

※1 飛散距離、飛散高さは電力共通研究「平成 24 年度 原子力発電 所の竜巻に対する評価方法に関する研究」(竜巻風速 71m/s) より 引用

4. 設計竜巻荷重

設計竜巻荷重は、設計竜巻の風圧力による荷重(W_w)、気圧差による荷重(W_P)、および設計飛来物による衝撃荷重(W_M)を組み合わせた複合荷重とした。

$$W_{T1} = W_P$$

$$W_{T2} = W_W + 0.5 \cdot W_P + W_M$$

 W_{T1} 、 W_{T2} : 設計竜巻による複合荷重 W_{w} : 設計竜巻の風圧力による荷重

W_p: 設計竜巻の気圧差による荷重

W_M: 設計飛来物による衝撃荷重

5. 評価対象施設

(1) 竜巻防護施設

「基準地震動及び耐震設計方針指針に係る審査ガイド(仮称)」の重要度分類における耐震Sクラスの設計を要求される建屋である以下の建屋とした。断面図および平面図を図1、2に示す。

- 原子炉格納容器(PCCV)
- 原子炉周辺建屋(E/B)
- 制御建屋(C/B)

(2) 波及的影響を及ぼし得る施設

当該施設の破損により、竜巻防護施設に機械的な波及的影響を 及ぼして安全機能を喪失させる可能性が否定できない施設は、竜 巻防護施設に隣接する以下の建屋とした。

タービン建屋(T/B)

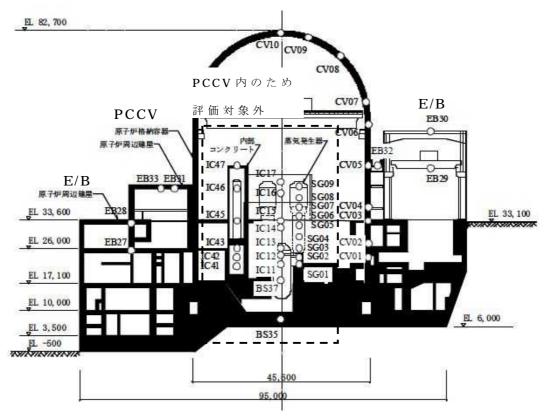


図 1(1) 大飯 3,4 号機原子炉格納容器(PCCV)、原子炉周辺建屋(E/B) 概略断面図

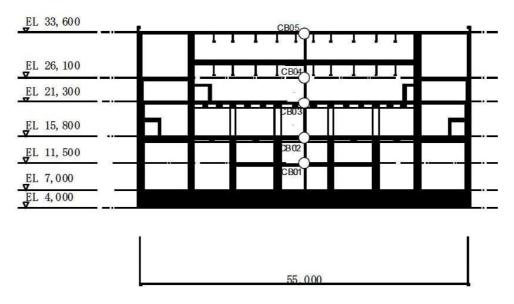


図 1(2) 大飯 3,4 号機 制御建屋(C/B)概略断面図

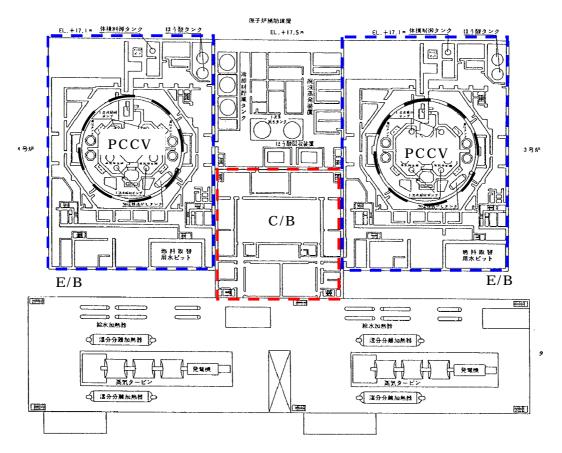


図 2 主要建屋平面図

6. 評価内容

- (1) 竜巻防護施設の構造健全性の評価
 - ①鉄筋コンクリート造部分

設計竜巻による複合荷重により生じるせん断応力を算出し、 地震応答解析モデルに適用しているせん断力の復元特性($Q-\gamma$ 関係)よりせん断歪度を算定し、鉄筋コンクリート造耐震壁の 最大応答せん断歪度の許容限界値2000 μ *2 との比較により十分 な安全余裕を有していることを確認した。

※2:原子力発電所耐震設計技術規程(JEAC4601-2008)に示されている、Sクラスの建物・構築物の鉄筋コンクリート造耐震壁に対する基準地震動Ssによる各層の鉄筋コンクリート造耐震壁の最大応答せん断歪度の許容限界値。

② 鉄骨造部分

設計竜巻による複合荷重により生じるせん断応力を算出し、地震応答解析モデルに適用している荷重変形関係(Q-δ関係)から得られる水平変位より層間変形角を算定し、許容限界値120分の1^{**3}との比較により十分な安全余裕を有していることを確認した。

※3:建築基準法施行令第82条の2に示されている、当該層間変 位の当該各階の高さに対する割合の許容限界値。

(2) 竜巻防護施設に対する波及的影響評価

a. 設計飛来物の評価

表2に示す設計飛来物が、竜巻防護施設に衝突した場合の貫通および裏面剥離評価を行った。設計飛来物は、剛飛来物(鋼製パイプ、鋼製材、コンクリート板)および柔飛来物(コンテナ、トラック)に分けて検討を行った。貫通または裏面剥離が生じないための必要最小壁厚さを以下により算出した。

① 剛飛来物

以下のNEI07-13^{※4}におけるミサイル評価式を用いて評価を行

った。これらの評価式は航空機エンジンに対するものであるため、各評価式に適用する低減係数を考慮しない(=1.0)とすることで保守的に評価を行った。

4: Methodology for Performing Aircraft Impact Assessments
 for New Plant Designs

a. 貫通評価

(1)式に示す修正NDRC式を用いて貫入深さ x_c を求め、Degenによる(2)式により貫通限界厚さを求める。

$$x_c = \alpha_c \sqrt{4KWND \left(\frac{V}{1000D}\right)^{1.8}}$$
 , for $\frac{x_c}{\alpha_c D} < 2.0 \cdot \cdot \cdot (1)$

x_c: 貫入深さ (in)

 $K: 180 / \sqrt{Fc}$

₩: 重量 (1bs)

Fc: コンクリート強度 (psi)

Fc30(E/B, C/B), Fc44(PCCV)

D: 飛来物直径 (in)

V: 衝突速度 (ft/s)

N:形状係数(0.72:平坦)

α c: 飛来物低減係数 (=1)

$$t_p = \alpha_p D \left\{ 2.2 \left(\frac{x_c}{a_c D} \right) - 0.3 \left(\frac{x_c}{a_c D} \right)^2 \right\} \quad , \quad \text{for} \quad \frac{x_c}{\alpha_c D} \le 1.52 \cdot \cdot \cdot (2)$$

α_p: 飛来物低減係数 (=1)

b. 裏面剥離評価

(3)式に示すChangによる評価式を用いて、裏面剥離限界厚さを求める。

$$t_s = \alpha_s 1.84 \left(\frac{200}{V}\right)^{0.13} \frac{(MV^2)^{0.4}}{(D/12)^{0.2} (144Fc)^{0.4}}$$
 · · · (3)
$$\alpha_s :$$
 飛 来 物 低 減 係 数 (=1)

② 柔飛来物

建屋の壁および屋根を有限要素でモデル化し、衝撃荷重時刻歴 を入力する時刻歴解析を行う。

貫通および裏面剥離が起こりうると評価された場合は、内包 している竜巻防護施設の安全機能維持に影響を与えないことを 確認した。

7. 評価結果

- (1) 竜巻防護施設の構造健全性の確認結果
 - ①鉄筋コンクリート造部分

建屋の形状や特徴を反映して設定した複合荷重によるせん断応力を地震応答解析モデルにおける部材毎に算出し、せん断力の復元特性($Q-\gamma$ 関係)よりせん断歪度を算定し、鉄筋コンクリート造耐震壁の最大応答せん断歪度の許容限界値2000 μ との比較により安全余裕を確認した。複合荷重 W_{T1} 、 W_{T2} をそれぞれ加えた場合の評価結果を表3に示す。なお、評価結果はPCCV、E/B、C/B毎に裕度が一番低く評価されたケースを示している。

表3 鉄筋コンクリート造部分の裕度評価結果

部材名	荷重	竜巻荷重	せん断	裕度
前初名	ケース	(MN)	歪 度	(対 2000 μ)
PCCV				
CV01				
CV02	W	9 G	7.94 \times 10 ⁻⁶	250
CV03	W $_{T1}$	8.6	7.94 \ 10	250
C V O 4				
CV07	W $_{\mathrm{T}2}$	5.3	9.84×10^{-6}	200
E/B				
EB33	W $_{T1}$	0.8	2.67×10^{-6}	740
EB33	W $_{T2}$	2.9	9.47 \times 10 ⁻⁶	210
С/В				
CB01	W _{T 1}	1.6	6.61 \times 10 ⁻⁷	3000
CB05	W _{T 2}	2.6	1.65 \times 10 ⁻⁶	1200

表3より、設計竜巻の複合荷重によるせん断歪度の許容限界値に対する安全余裕は十分あることから、構造健全性が維持され 安全機能が維持できることが確認できた。

② 鉄骨造部分

建屋の形状や特徴を反映して設定した複合荷重による応力を地震応答解析モデルにおける部材毎に算出し、地震応答解析モデルに適用している荷重変形関係 $(Q-\delta)$ 関係) からえら得る水平変位より層間変形角を算定し、許容限界値120分の1との比較により安全余裕を確認した。複合荷重 W_{T1} 、 W_{T2} をそれぞれ加えた場合の評価結果を表4に示す。なお、評価結果は裕度が一番低く評価されたケースを示している。

表4 鋼構造部分の裕度評価結果

部材名	荷重ケース	竜巻荷重 (MN)	層間変位角	裕度 (対 1/120)
E/B				
EB29	W _{T 1}	4.2	1.29×10^{-3}	6.4
EB31	W _{T 2}	3.3	2.54×10^{-3}	3.2

建屋の主要な部材である外壁、屋根(使用済燃料ピットエリア)に対する気圧差の影響評価を実施し、各部材の許容荷重と 設計竜巻による気圧差荷重を比較した結果を表5に示す。

表5 外壁および屋根に対する気圧差影響評価

部材名	裕度
屋根スラブ	8.3
外壁 (折板)	2.4

表4および表5より、設計竜巻の複合荷重による層間変形角の許容限界値に対する安全余裕は十分ありまた、主要部材に対しても安全余裕が十分あることから、構造健全性が維持され安全機能が維持できることが確認できた。

(2) 竜巻防護施設に波及的影響を及ぼし得る施設の確認結果

a. 波及的影響を及ぼし得る施設の評価

竜巻防護施設に隣接してタービン建屋があるが、当該建屋は建築基準法による速度圧設計(300kg/m²)で設計しており、これは設計風速で69.3m/s相当であることから、設計竜巻により損壊することはないことから、竜巻防護施設の安全機能に影響を与えない。

b. 設計飛来物の評価

①鉄筋コンクリート造部分

設計飛来物の衝突に対する裏面剥離または貫通を生じないための必要最小壁厚さを算出し、建屋の壁厚さや屋根スラブ厚さと比較し評価を行った。設計飛来物の衝突に対する裏面剥離または貫通を生じないための必要最小壁厚さの結果を表6(1)~表6(8)、各建屋の外壁および屋根スラブの最も壁厚が薄い箇所の評価結果を表7に示す。

なお、鉄パイプは質量と速度が共に鋼製材より十分小さいこと から、鋼製材に対する健全性検討で包含させる。

表 6(1) PCCV必要最小壁厚さ (水平)

	鋼製材	コンクリート板
飛来物速度(水平)	57m/s	$30\mathrm{m/s}$
裏面剥離	40cm	40cm
貫通	25cm	23cm

表6(2)PCCV必要最小壁厚さ(鉛直)

	鋼製材	コンクリート板
飛来物速度(鉛直)	$38 \mathrm{m/s}$	$20\mathrm{m/s}$
裏面剥離	$30\mathrm{cm}$	30cm
貫通	18cm	16cm

表 6 (3) PCCV必要最小壁厚さ(水平)

	コンテナ	トラック
飛来物速度(水平)	$60 \mathrm{m/s}$	$34\mathrm{m/s}$
貫通	30cm	30cm

表 6 (4) PCCV必要最小壁厚さ(鉛直)

	コンテナ	トラック
飛来物速度(鉛直)	$40\mathrm{m}/\mathrm{s}$	$23\mathrm{m/s}$
貫通	$20\mathrm{c}\mathrm{m}$	20cm

表6(5)E/B、C/B必要最小壁厚さ (水平)

	鋼製材	コンクリート板
飛来物速度(水平)	$57\mathrm{m/s}$	$30\mathrm{m/s}$
裏面剥離	45cm	45cm
貫通	27cm	25ст

表6(6)E/B、C/B必要最小壁厚さ(鉛直)

	鋼製材	コンクリート板
飛来物速度(鉛直)	$38 \mathrm{m/s}$	$20\mathrm{m/s}$
裏面剥離	35cm	35cm
貫通	20cm	18cm

表6(7)E/B、C/B必要最小壁厚さ (水平)

	コンテナ	トラック
飛来物速度(水平)	$60 \mathrm{m/s}$	$34\mathrm{m/s}$
貫通	30cm	30cm

表6(8)E/B、C/B必要最小壁厚さ(鉛直)

	コンテナ	トラック
飛来物速度(鉛直)	$40\mathrm{m/s}$	$23\mathrm{m/s}$
貫通	20cm	20cm

表7 設計飛来物による裏面剥離、貫通評価結果

建屋	外壁/屋根ス	ラブ	飛来物	検討結	果
	位置 EL.(m)	厚さ		裏面剥離	貫通
		(cm)			
PCCV	17.1 \sim 60.1	130	鋼製材	0	0
	(外壁)		コンクリート板	浮き上がらプ	ないため
			コンテナ	評価不要	
			トラック		
	$60.1 \sim 82.7$	110	飛来物がドー	- ム部まで浮	き上がら
	(ドーム部)		ないため評価	五 不要	
E/B	17. $1 \sim 33.6$	90	鋼製材	0	0
	(外壁)		コンクリート板	浮き上がらプ	ないため
			コンテナ	評価不要	
			トラック		
C/B	$26.1 \sim 33.6$	60	鋼製材	0	0
	(外壁)		コンクリート板	浮き上がられ	ないため
			コンテナ	評価不要	
			トラック		
	33.6	20	鋼製材	O * 5	0
	(屋根)		コンクリート板	浮き上がられ	ないため
			コンテナ	評価不要	
			トラック		

〇:貫通または裏面剥離無し

※5: 当該箇所は屋内側にデッキプレート(2.3mm厚の凹凸鉄板で最大深さ75mm)を施工しており、裏面剥離によるコンクリート片の飛散は起こらない。

表 7 より、設計飛来物による裏面剥離および貫通を防止するための壁厚さがあることから、竜巻防護施設に対し、安全機能

維持に影響を与えないことを確認した。

② 鉄骨造部分

設計飛来物が鉄骨造部分(燃料取扱建屋)に衝突した場合、鉄骨造部分は貫通することから、竜巻防護施設である使用済燃料ピット中に、設計飛来物が進入した場合の影響評価を行った。

評価においては、保守的に原子炉周辺建屋の屋根・壁を考慮せずに、飛来物が直接使用済み燃料ピット内へ鉛直で進入し、燃料及び燃料ラックへ衝突するとし、浮き上がる設計飛来物(鋼製パイプ、鋼製材)について影響確認を行った。

(a) 鋼製パイプ

飛来高さは8cmであり、使用済み燃料ピットへの進入は考えがたい。

(b)鋼製材

燃料集合体に衝突する場合は、燃料被覆管の許容引張強さ 680MPaに対し、発生応力は670MPaであり、燃料被覆管は破損しない。

(3) 気圧差による圧力影響を受ける開口部の評価

竜巻防護施設について、気圧差による圧力影響を受ける開口部(窓、扉、シャッター)を抽出し、開口部の許容限界と比較し、安全余裕の確認を行った結果を表8に示す。表8より許容限界値に対する安全余裕は十分あることから、竜巻防護施設の安全機能維持に影響を与えないことを確認した。

また、主蒸気管室の3壁面に配置されたブローアウトパネルが 気圧差により開放された場合、建屋内外の気圧は均圧となること から竜巻防護施設の安全機能維持に影響を与えない。

表8 気圧差による圧力影響評価結果

建屋	対象開口部	許容限界値	裕度
		(hPa)	
E/B	使用済燃料ピットス	142	3.3
	ライディングドア		
E/B	機器搬入口スライデ	137	3.1
	ィングドア		
E/B, C/B	水密扉	400	9.3

知見拡充で使用する設計竜巻に対する建屋、構築物等の 構造健全性の確認結果

1. 概要

大飯3,4号機において、知見拡充で使用する設計竜巻荷重に対して、建屋の構造健全性が維持されて安全機能が維持されることを確認した。

2. 設計竜巻の特性値

設計 竜巻の特性値は表1の通りとした。

最大 移動 最大接線 最大接線 最大気圧 気 圧 風速 風速 低下率 速度 風速半径 低下量 $V_{Rm} (m/s)$ (dp/dt)_{max} $V_D (m/s)$ $V_{T} (m/s$ $R_{m}(m)$ Δ P(hPa) (hPa/s) 100 16 84 30 85 45

表1 設計竜巻の特性値

3. 設計飛来物の諸元

設計飛来物の諸元は表 2 の通りとした。

表2 設計飛来物の諸元

飛来物	棒状物		板状物	塊状物	
の種類	鋼製パ	鋼製材	コンクリ	コンテナ	トラック
	イプ		ート板		
サイズ	長さ×直	長さ×幅	長さ×幅×	長さ×幅	長さ×幅
(m)	径	×奥行き	厚さ	×奥行き	×奥行き
	2×0.05	4.2×0.3	$1.5 \times 1 \times$	2.4×2.6	$5 \times 1.9 \times$
		\times 0.2	0.15	× 6	1.3
質量	8.4	135	540	2300	4750
(kg)					
飛散					
距離 **1	741	741	818	743	934
(m)					
飛散					
高さ※1	33	56	0	30	0
(m)					

※1:飛散距離、飛散高さは電力共通研究「平成24年度 原子力発電 所の竜巻に対する評価方法に関する研究」(竜巻風速100m/s)よ り引用

4. 設計竜巻荷重

設計竜巻荷重は、設計竜巻の風圧力による荷重(W_w)、気圧差による荷重(W_p)、および設計飛来物による衝撃荷重(W_M)を組み合わせた複合荷重とした。

$$\begin{aligned} W_{T1} &= W_P \\ W_{T2} &= W_W + 0.5 \cdot W_P + W_M \end{aligned}$$

 W_{T1} 、 W_{T2} : 設計竜巻による複合荷重 W_{w} : 設計竜巻の風圧力による荷重

W_p: 設計竜巻の気圧差による荷重

W_M: 設計飛来物による衝撃荷重

5. 評価対象施設

(1) 竜巻防護施設

「基準地震動及び耐震設計方針指針に係る審査ガイド (仮称)」の重要度分類における耐震 S クラスの設計を要求される建屋である、以下の建屋とした。断面図および平面図を図 1、2 に示す。

- 原子炉格納容器(PCCV)
- 原子炉周辺建屋(E/B)
- 制御建屋(C/B)

(2) 波及的影響を及ぼし得る施設

当該施設の破損により、竜巻防護施設に機械的な波及的影響を 及ぼして安全機能を喪失させる可能性が否定できない施設は、竜 巻防護施設に隣接する以下の建屋とした。

タービン建屋(T/B)

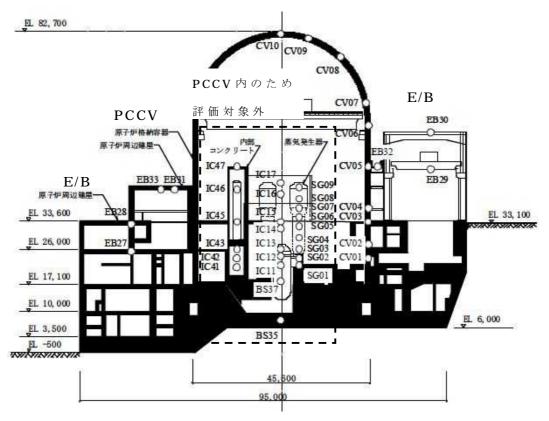


図 1(1) 大飯 3,4 号機原子炉格納容器(PCCV)、原子炉周辺建屋(E/B) 概略断面図

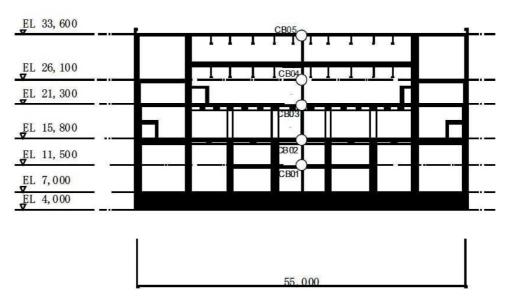


図 1(2) 大飯 3,4 号機 制御建屋(C/B)概略断面図

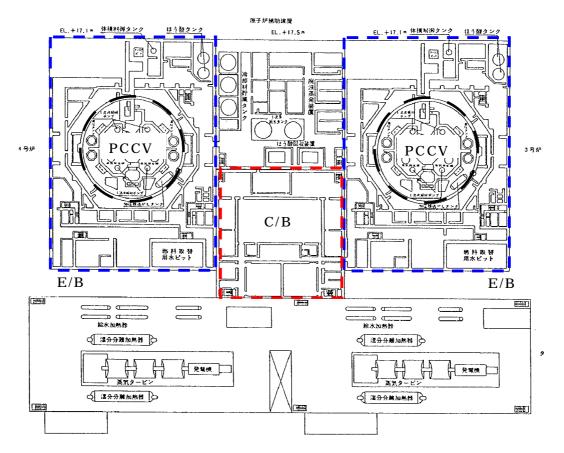


図 2 主要建屋平面図

6. 評価内容

- (1)竜巻防護施設の構造健全性の評価
 - ①鉄筋コンクリート造部分

設計竜巻による複合荷重により生じるせん断応力を算出し、 地震応答解析モデルに適用しているせん断力の復元特性($Q-\gamma$ 関係)よりせん断歪度を算定し、鉄筋コンクリート造耐震壁の 最大応答せん断歪度の許容限界値2000 μ *2 との比較により十分 な安全余裕有していることを確認した。

※2:原子力発電所耐震設計技術規程(JEAC4601-2008)に示されている、Sクラスの建物・構築物の鉄筋コンクリート造耐震壁に対する基準地震動Ssによる各層の鉄筋コンクリート造耐震壁の最大応答せん断歪度の許容限界値。

② 鉄骨造部分

設計竜巻による複合荷重により生じるせん断応力を算出し、 地震応答解析モデルに適用している荷重変形関係(Q-δ関係) から得られる水平変位より層間変形角を算定し、許容限界値 120分の1*3との比較により十分な安全余裕を有している ことを確認した。

※3:建築基準法施行令第82条の2に示されている、当該層間変 位の当該各階の高さに対する割合の許容限界値。

(2) 竜巻防護施設に対する波及的影響評価

a. 設計飛来物の評価

表2に示す設計飛来物が、竜巻防護施設に衝突した場合の貫通および裏面剥離評価を行った。設計飛来物は、剛飛来物(鋼製パイプ、鋼製材、コンクリート板)および柔飛来物(コンテナ、トラック)に分けて検討を行った。貫通または裏面剥離が生じないための必要最小壁厚さを以下により算出した。

③剛飛来物

以下のNEI07-13^{※4}におけるミサイル評価式を用いて評価を行

った。これらの評価式は航空機エンジンに対するものであるため、各評価式に適用する低減係数を考慮しない(=1.0)とすることで保守的に評価を行った。

a. 貫通評価

(1)式に示す修正NDRC式を用いて、貫入深さ x_c を求め、Degenによる(2)式により貫通限界厚さを求める。

$$x_c = \alpha_c \sqrt{4KWND \left(\frac{V}{1000D}\right)^{1.8}} \quad \text{for } \frac{x_c}{\alpha_c D} < 2.0 \quad \cdot \quad \cdot \quad (1)$$

x_c: 貫入深さ(in)

 $K: 180 / \sqrt{Fc}$

W: 重量 (1bs)

Fc: コンクリート強度 (psi)

Fc30(E/B, C/B), Fc44(PCCV)

D: 飛来物直径 (in)

V: 衝突速度 (ft/s)

N:形状係数 (0.72:平坦)

α c: 飛来物低減係数 (=1)

$$t_p = \alpha_p D \left\{ 2.2 \left(\frac{x_c}{a_c D} \right) - 0.3 \left(\frac{x_c}{a_c D} \right)^2 \right\} \quad \text{for} \quad \frac{x_c}{\alpha_c D} < 1.52 \quad \cdot \quad \cdot \quad (2)$$

 α_p : 飛来物低減係数 (=1)

b. 裏面剥離評価

(3)式に示すChangによる評価式を用いて、裏面剥離限界厚さを求める。

$$t_s = \alpha_s 1.84 \left(\frac{200}{V}\right)^{0.13} \frac{\left(MV^2\right)^{0.4}}{\left(D/12\right)^{0.2} \left(144Fc\right)^{0.4}} \cdot \cdot \cdot (3)$$

a。: 飛来物低減係数 (=1)

④ 柔飛来物

建屋の壁および屋根を有限要素でモデル化し、衝撃荷重時刻 歴を入力する時刻歴解析を行う。

貫通および裏面剥離が起こりうると評価された場合は、内包 している竜巻防護施設の安全機能維持に影響を与えないこと を確認した。

7. 評価結果

- (1) 竜巻防護施設の構造健全性の確認結果
 - ①鉄筋コンクリート造部分

建屋の形状や特徴を反映して設定した複合荷重によるせん断応力を地震応答解析モデルにおける部材毎に算出し、せん断力の復元特性($Q-\gamma$ 関係)よりせん断歪度を算定し、鉄筋コンクリート造耐震壁の最大応答せん断歪度の許容限界値2000 μ との比較により安全余裕を確認した。複合荷重 W_{T1} 、 W_{T2} をそれぞれ加えた場合の評価結果を表3に示す。なお、評価結果はPCCV、E/B、C/B毎に裕度が一番低く評価されたケースを示している。

表3 鉄筋コンクリート造部分の裕度評価結果

部材名	荷重	竜巻荷重	せん断歪	裕度
司役名	ケース	(MN)	度	(対 2000 μ)
PCCV				
CV01				
CV02	W	17 1	1. 57×10^{-5}	120
CV03	W _{T 1}	17.1		120
CV04				
CV07	W _{T2}	8.8	1.64 \times 10 ⁻⁵	120
E/B				
EB33	W _{T 1}	1.6	5. 27×10^{-6}	370
EB33	W _{T 2}	3.9	1.29×10^{-5}	150
С/В				
CB01	W _{T 1}	3.2	1.31×10^{-6}	1500
CB01	W _{T2}	6.3	2.54×10^{-6}	780

表3より、設計竜巻の複合荷重によるせん断歪度の許容限界値に対する安全余裕は十分あることから、構造健全性が維持され 安全機能が維持できることが確認できた。

② 鉄骨造部分

建屋の形状や特徴を反映して設定した複合荷重による応力を地震応答解析モデルにおける部材毎に算出し、地震応答解析モデルに適用している荷重変形関係 $(Q-\delta)$ 関係)からえら得る水平変位より層間変形角を算定し、許容限界値120分の1との比較により安全余裕を確認した。複合荷重 W_{T1} 、 W_{T2} をそれぞれ加えた場合の評価結果を表4に示す。なお、評価結果は裕度が一番低く評価されたケースを示している。

表 4 鋼構造部分の裕度評価結果

部材名	荷重ケース	竜巻荷重 (MN)	層間変位角	裕度 (対 1/120)
E/B				
EB29	W _{T1}	8.3	2.56×10^{-3}	3.2
EB31	W _{T2}	4.8	3.68×10^{-3}	2.2

建屋の主要な部材である外壁、屋根(使用済燃料ピットエリア)に対する気圧差の影響評価を実施し、各部材の許容荷重と 設計竜巻による気圧差荷重を比較した結果を表5に示す。

表5 外壁および屋根に対する気圧差影響評価

部材名	裕度
屋根スラブ	4.2
外壁 (折板)	1.2

表4および表5より、設計竜巻の複合荷重による層間変形角の 許容限界値に対する安全余裕は十分ありまた、主要部材に対し ても安全余裕が十分あることから、構造健全性が維持され安全 機能が維持できることが確認できた。

(2) 竜巻防護施設に波及的影響を及ぼし得る施設の確認結果

a. 波及的影響を及ぼし得る施設の評価

竜巻防護施設に隣接してタービン建屋があるが、当該建屋は建築基準法による速度圧設計(300kg/m²)で設計しており、これは設計風速で69.3m/sに相当する。知見知充で使用する設計竜巻

(100m/s)でも大きな損壊は受けないと考えられる。鉄骨造のタービン建屋は、壁や窓等は損傷すると思われるが、主梁・柱は機能を保ち、タービン等の重量機器・主配管は溶接され、支持構造物で固定されており飛散することは考えがたい。タービン建屋か

ら飛来する飛来物による原子炉格納容器(PCCV)、原子炉周辺建屋(E/B)、制御建屋(C/B)への飛来物影響としては、剛体で投影断面積が小さく重量もある鋼製材による影響評価で包絡されると考えられる。

b. 設計飛来物の評価

①鉄筋コンクリート造部分

設計飛来物の衝突に対する裏面剥離または貫通を生じないための必要最小壁厚さを算出し、建屋の壁厚さや屋根スラブ厚さと比較し評価を行った。設計飛来物の衝突に対する裏面剥離または貫通を生じないための必要最小壁厚さの結果を表6、各建屋の外壁および屋根スラブの最も壁厚が薄い箇所の評価結果を表7に示す。

なお、鉄パイプは質量と速度が共に鋼製材より十分小さいこと から、鋼製材に対する健全性検討で包含させる。

表 6(1) PCCV必要最小壁厚さ (水平)

	鋼製材	コンクリート板
飛来物速度(水平)	57m/s	$30 \mathrm{m/s}$
裏面剥離	40cm	40cm
貫通	25cm	23cm

表 6(2) PCCV必要最小壁厚さ(鉛直)

	鋼製材	コンクリート板
飛来物速度(鉛直)	38 m/s	$20\mathrm{m/s}$
裏面剥離	$30\mathrm{cm}$	30cm
貫通	18cm	16cm

表6(3)PCCV必要最小壁厚さ (水平)

	コンテナ	トラック
飛来物速度(水平)	$60 \mathrm{m/s}$	$34\mathrm{m/s}$
貫通	30cm	30cm

表6(4)PCCV必要最小壁厚さ(鉛直)

	コンテナ	トラック
飛来物速度(鉛直)	$40\mathrm{m/s}$	23m/s
貫通	20cm	20cm

表6(5)E/B、C/B必要最小壁厚さ (水平)

	鋼製材	コンクリート板
飛来物速度(水平)	$57\mathrm{m/s}$	$30 \mathrm{m/s}$
裏面剥離	45cm	45cm
貫通	27cm	25cm

表6(6)E/B、C/B必要最小壁厚さ(鉛直)

	鋼製材	コンクリート板
飛来物速度(鉛直)	$38 \mathrm{m/s}$	$20\mathrm{m/s}$
裏面剥離	35cm	35cm
貫通	20cm	18cm

表 6 (7) E/B、C/B必要最小壁厚さ (水平)

	コンテナ	トラック
飛来物速度(水平)	$60 \mathrm{m/s}$	$34\mathrm{m/s}$
貫通	30cm	30cm

表6(8)E/B、C/B必要最小壁厚さ(鉛直)

	コンテナ	トラック
飛来物速度(鉛直)	$40 \mathrm{m/s}$	23m/s
貫通	20cm	20cm

表7 設計飛来物による裏面剥離、貫通評価結果

建屋	外壁/屋根ス	ラブ	飛来物	検討系	
	位置 EL.(m)	厚さ		裏面剥離	貫通
		(cm)			
PCCV	$17.1 \sim 60.1$	130	鋼製材	0	0
	(外壁)		コンクリート板	浮き上がら	っないた
				め評価不要	
			コンテナ	_	0
			トラック	浮き上がら	らないた
				め評価不要	
	60.1 \sim 82.7	110	鋼製材	0	0
	(ドーム部)		コンクリート板	浮き上がら	らないた
				め評価不要	
			コンテナ	_	0
			トラック	浮き上がら	らないた
				め評価不要	
E/B	$17.1 \sim 33.6$	90	鋼製材	0	0
	(外壁)		コンクリート板	浮き上がら	っないた
				め評価不要	
			コンテナ	_	0
			トラック	浮き上がら	っないた
				め評価不要	
C/B	$26.1 \sim 33.6$	60	鋼製材	0	0
	(外壁)		コンクリート板	浮き上がら	らないた
				め評価不要	
			コンテナ	_	0
			トラック	浮き上がら	っないた
				め評価不要	

33.6	20	鋼製材	O * 4	0
(屋根)		コンクリート板	浮き上がら	っないた
			め評価不要	
		コンテナ	O * 4	0
		トラック	浮き上がら	っないた
			め評価不要	

〇:貫通または裏面剥離無し

※4: 当該箇所は屋内側にデッキプレート(2.3mm厚の凹凸鉄板で最大深さ75mm)を施工しており、裏面剥離によるコンクリート片の飛散は起こらない。

表 7 より、設計飛来物による裏面剥離および貫通を防止する ための壁厚さがあることから、竜巻防護施設に対し、安全機能 維持に影響を与えないことを確認した。

② 鋼構造部分

設計飛来物が鉄骨造部分(燃料取扱建屋)の区画壁に衝突した場合、貫通することから、竜巻防護施設である使用済燃料ピット中に、設計飛来物が進入した場合の影響評価を行った。

評価においては、保守的に原子炉周辺建屋の屋根・壁を考慮せずに、飛来物が直接使用済み燃料ピット内へ鉛直で進入し、燃料及び燃料ラックへ衝突するとし、浮き上がる設計飛来物(鋼製パイプ、鋼製材、コンテナ)について影響確認を行った。

(a) 鋼製パイプ

鋼製パイプが燃料ラックに衝突する場合は、ラックセル許容 貫入量の最小値252mmに対し、27mmの貫入となり、燃料ラックの 損傷範囲が燃料有効部に達することはなく、未臨界性に影響は ない。また燃料集合体に衝突する場合は、燃料被覆管の許容引 張強さ680MPaに対し、発生応力は130MPaであり燃料被覆管は破 損しない。

(b)鋼製材

燃料集合体に衝突する場合は、燃料被覆管の許容引張強さ 680MPaに対し、発生応力は670MPaであり、燃料被覆管は破損しない。

(c) コンテナ

コンテナは着水により浮力が作用することで、いったん浮き上がり、その後の自由落下により、燃料集合体に衝突する。その場合の燃料被覆管に発生する応力は許容引張強さ680MPaに対し、270MPaであり燃料被覆管は破損しない。

(3) 気圧差による圧力影響を受ける開口部の評価

竜巻防護施設について、気圧差による圧力影響を受ける開口部(窓、扉、シャッター)を抽出し、開口部の許容限界と比較し、安全余裕の確認を行った結果を表8に示す。表8より許容限界値に対する安全余裕は十分あることから、竜巻防護施設の安全機能維持に影響を与えないことを確認した。

また、主蒸気管室の3壁面に配置されたブローアウトパネル が気圧差により開放された場合、建屋内外の気圧は均圧となるこ とから竜巻防護施設の安全機能維持に影響を与えない。

表8 気圧差による圧力影響評価結果

建屋	対象開口部	許容限界值	裕度
		(hPa)	
E/B	使用済燃料ピットスラ	142	1.6
	イディングドア		
E/B	機器搬入口スライディ	137	1.6
	ングドア		
E/B, C/B	水密扉	400	4.7

設計竜巻に対する設備の構造健全性の確認結果

1. 概要

大飯3,4号機において、竜巻設計荷重に対して、設備の構造健全性が維持されて安全機能が維持されることを確認した。

2. 設計 竜巻の特性値

設計竜巻の特性値は表1の通りとした。

最大 移動 最大 最大 気 圧 最大気圧 低下率 風速 速度 接線 接線 低下量 V_{D} 風速 風速 ΔΡ $(dp/dt)_{max}$ V_{T} (hPa/s) (m/s)(m/s) V_{Rm} 半径 (hPa) (m/s) $R_{m}(m)$ 69 10 59 30 43 15

表1 設計竜巻の特性値

3. 設計飛来物の諸元

設計飛来物の諸元は表2の通りとした。

表2 設計飛来物の諸元

亚、 士 <i>Ha</i> n	棒状	物	板状物	塊状	: 物
	鋼製	鋼製材	コンクリ	コンテナ	トラック
	パイプ		ート板		
	長さ×直	長さ×幅	長さ×幅	長さ×幅	長さ×幅
サイズ	径	×奥行き	×厚さ	×奥行き	×奥行き
(m)		4.2×0.3	$1.5 \times 1 \times$	2.4×2.6	$5 \times 1.9 \times$
飛来物の種類鋼製パイプよさ×直サイズ径	2×0.05	\times 0.2	0.15	$\times 6$	1.3
質 量	Q /I	135	540	2300	4750
(kg)	0.4	155	340	2300	4730
飛散					
距離	354	345	389	355	430
(m) * 1					
飛散					
高さ	0.08	14	0	0	0
(m) *1					

※1 飛散距離、飛散高さは電力共通研究「平成 24 年度 原子力発電 所の竜巻に対する評価方法に関する研究」(竜巻風速 71m/s) よ り引用

4. 評価対象施設

(1) 竜巻防護施設

「基準地震動及び耐震設計方針に係る審査ガイド (仮称)」の 重要度分類における耐震 S クラスの設計を要求される設備であ り、外殻となる施設により防護が期待できない設備として、以下 を抽出した。

- ①海水ポンプ
- ② 排気筒 (建屋外)

ただし、「3. 設計飛来物の諸元」における設計飛来物は、設

計竜巻による飛散高さが最大で 14m(鋼製材)であり、排気筒の高さ (EL. 49. 95m~EL. 82. 7m) まで浮き上がらず、排気筒に衝突し得ないことから、設計飛来物の評価対象は海水ポンプのみとする。

- (2) 波及的影響を及ぼし得る施設
 - a. 当該施設の破損により、竜巻防護施設に機械的な波及的影響 を及ぼし得る施設

当該施設の破損により、竜巻防護施設に機械的な波及的影響を及ぼして安全機能を喪失させる可能性が否定できない施設として、以下を抽出した。

- タービン建屋(T/B)
- 海水ポンプ室クレーン
- b. 当該施設の破損により、耐震 S クラス設備に機能的な波及的 影響を及ぼし得る施設

換気・冷却等が必要な耐震Sクラス設備を内包する区画の換気 空調設備の内、排気筒(建屋内)、外気と繋がるダクト、外気と の隔離箇所(ダンパ、バタフライ弁)、外気との隔離箇所までに 設置されているファンとした。

なお、ディーゼル発電機室給気ファンについては、ガラリ内に 設置されており、またファンの入口側にダクトが接続されていな いことから、ファンの内外において気圧差の影響を受け得ないこ とから、評価対象外とした。

評価対象の換気空調設備は表3のとおり。

表 3 評価対象設備

耐震Sクラス設備に波及的影響	
を及ぼし得る換気空調系統	評価対象設備
・排気筒	排気筒
・アニュラス空気浄化系	
(以下の系統のアニュラス空気	・ダクト
浄化系排気ラインのバウンダ	・ダンパ
リ部を含む	・ バタフライ弁(アニュラス全
・格納容器排気系	量排気弁およびアニュラス少
・補助建屋排気系	量排気弁)
・ 放射線管理室排気系)	
安全補機室冷却系	・ダクト
女主州城主印列示	・ダンパ
・ディーゼル発電機室換気系	・ダクト
1 7 7 1 1 1 2 7 元 电 恢 主 换 X 尔	・ダンパ
・電動補助給水ポンプ室換気系	・ダクト
电奶而奶和水水之之主换从水	・ダンパ
制御用空気圧縮器室換気系	・ダクト
而 两 加 主 从 工 相 苗 主 换 入 尔	・ダンパ
・ 安全補機開閉器室空調系	・ダクト
女 王 III W	・ダンパ
	・ダクト
・蓄電池室排気系	・ダンパ
	・ ファン(蓄電池室排気ファン)
中央制御室空調系	・ダクト
下入叫仰王王刚求	・ダンパ

5. 評価内容

(1) 竜巻防護施設の構造健全性の評価

①海水ポンプ

海水ポンプ及びモータについて、設計竜巻による気圧差荷重 (W_P) ならびに風圧力による荷重 (W_W) 、気圧差荷重 (W_P) 及び設計飛来物の衝撃荷重 (W_M) による複合荷重 $(W_W+0.5W_P+W_M)$ により海水ポンプが転倒する可能性が考えられるため、据付面基礎ボルト、電動機取合ボルト等に発生する応力を算定し、支持構造物の許容応力*2との比較により安全余裕を確認する。

なお、設計飛来物による衝撃荷重(W_M)については、設計飛来物の影響評価結果を踏まえて、飛来物による衝撃荷重を考慮するかを検討する。

※2 原子力発電所耐震設計技術規程 (JEAC4601-2008) の支持 構造物に対する、供用状態Csの許容応力。

②排気筒

排気筒について、設計竜巻による気圧差荷重(W_p)ならびに風圧力による荷重(W_w)及び気圧差荷重(W_p)による複合荷重($W_w+0.5W_p$)を評価する。

なお、設計竜巻による設計飛来物の飛散高さは最大で14m(鋼製材)であり、排気筒の高さ($EL.49.95m \sim EL.82.7m$)まで浮き上がらず、排気筒に衝突し得ないことから、設計飛来物による衝撃荷重(W_M)は評価しない。

評価の方法は、竜巻による複合荷重を短期荷重とみなし、自重との重ね合わせを考慮して、長期荷重(自重)+短期荷重(竜巻)による応力が許容値を超えない事を確認する。

また応力が許容値を超えた場合には、安全機能が維持できることを確認する。

角ダクトについては、板材に対し長期荷重(自重)+短期荷 重(竜巻)による強度評価を行うとともに、補強部材も評価す る。

丸ダクトについては、長期荷重(自重)+短期荷重(竜巻) による座屈評価および曲げ評価を行う。

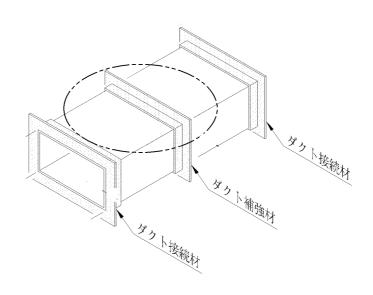


図1 角ダクトのイメージ図

(2) 竜巻防護施設に対する波及的影響

- a. 波及的影響を及ぼし得る施設の評価
 - (a) 当該施設の破損により、竜巻防護施設に機械的な波及的 影響を及ぼし得る施設
 - ① タービン建屋

竜巻防護施設(原子炉格納容器、原子炉周辺建屋、制御建屋)に隣接してタービン建屋があるが、当該建屋は建築基準法による速度圧設計(300kg/m²)で設計しており、これは設計風速で69.3m/sに相当することから、設計竜巻により損壊しない。従って、竜巻防護施設の安全機能に影響を与えない。

②海水ポンプ室クレーン

海水ポンプ室クレーンについては、転倒により海水ポンプに影響を及ぼす可能性があることから、海水ポンプ室クレーンの高さと海水ポンプ室クレーン係留位置から海水ポンプまでの距離を比較することにより、健全であることを確認する。

(b) 当該施設の破損により、耐震 S クラス設備に機能的な波 及的影響を及ぼし得る施設

換気・冷却等が必要な耐震Sクラス設備を内包する区画の換気空調設備の内、排気筒(建屋内)、外気と繋がるダクト、外気との隔離箇所(ダンパ、バタフライ弁)、外気との隔離箇所までに設置されているファンについて、気圧差に対する健全性を評価する。

各評価方法については以下のとおり。

①排気筒およびダクト

評価対象設備について、ダクト種別(丸ダクト、角ダクト)、口径、板厚を考慮し分類し、設計用竜巻により、それぞれのダクト内外の差圧が43hPaになった場合の評価を行う。

評価の方法は、竜巻による負圧を短期荷重とみなし、自重との重ね合わせを考慮して(地震との重ね合わせはしない)、長期荷重(自重)+短期荷重(竜巻)による応力が許容値を超えない事を確認する。

また応力が許容値を超えた場合には、安全機能が維持できることを確認する。

角ダクトについては、板材に対し長期荷重(自重)+短期荷重(竜巻)による強度評価を行うとともに、補強部材も評価する。

丸ダクトについては、長期荷重(自重)+短期荷重(竜

巻)による座屈評価を行う。

②ダンパ

ダンパの構成部材毎(ケーシング、ベーン、シャフト) に評価を行う。設計用竜巻により発生するケーシングにか かる最大曲げ応力、ベーンにかかる最大曲げ応力、シャフ ト断面にかかる最大せん断応力が、それぞれ許容値を超え ないことを確認する。

③バタフライ弁

設計竜巻によってバタフライ弁に生じる圧力が、許容値 を超えないことを確認する。

④ファン

竜巻の影響によりケーシングに生じる周応力が許容値を 越えないことを確認する。

b. 設計飛来物の評価

(a) 海水ポンプ

海水ポンプに対して、設計飛来物による影響頻度および 貫通限界を評価する。

飛来物による影響頻度の考え方は、原子炉安全専門審査会「タービンミサイル評価について」昭和52年7月)を参考に、海水ポンプの破損確率が設計上考慮すべき頻度(10⁻⁷/年)を下回ることを確認する。

また飛来物による貫通評価の考え方は、風速69m/sの竜巻に対して、浮き上がる飛来物の貫通を生じないための必要最小厚さと海水ポンプの最小板厚を比較することで確認する。

鋼板の貫通限界厚さはBRL式*3を用いて求める。

 $T^{3/2} = \frac{0.5MV^2}{17400K^2D^{3/2}}$

T:鋼板厚さ (in)

M: ミサイル質量 (1b·s²/ft)

V: ミサイル速度 (ft/s)

D: ミサイル直径 (in)

K:鋼板の材質に関する係数≒1

※3 ISES 7607-3 「軽水炉構造機器の衝撃荷重に関する調査 その3 ミサイルの衝突による構造壁の損傷に関する評価 式の比較検討」(高温構造安全技術研究組合)

6. 評価結果

- (1) 竜巻防護施設の構造健全性の確認結果
 - ①海水ポンプ

後述の設計飛来物の評価結果より、海水ポンプの破損確率は設計上考慮すべき頻度(10^{-7} /年)を十分下回るため、飛来物による衝撃荷重(W_M)は評価しない。

設計竜巻による気圧差荷重 (W_p) ならびに風圧力による荷重及び気圧差荷重による複合荷重 $(W_w+0.5W_p)$ に対する海水ポンプ及びモータの据付面基礎ボルト、電動機取合ボルト等に関する評価結果は表4の通りであり、健全であることを確認した。

表 4 海水ポンプ及びモータ竜巻影響評価結果

評価部位	材質	発生	応力値	(MPa)	許容	裕	度
		応 力	W_{P}	W _w +	応力	W_P	W _w +
				$0.5W_{P}$	(MPa)		0.5W _P
電動機取合	SS400	引張	11	14	175	15.90	12.50
ボルト	(M36)						
電動機支え	SS400	引張	15	20	172	11.46	8.60
台取合ボル	(M36)						
F							
据付面取合	SUS304	引張	10	13	153	15.30	11.76
ボルト	(M42)						
据付面基礎	SUS304	引張	13	17	153	11.76	9.00
ボルト	(M48)						
電動機フレ	SS400	曲げ	1	1	282	282.00	282.00
ーム	(t16)						

②排気筒

設計竜巻による気圧差荷重 (W_P) ならびに風圧力による荷重及び気圧差荷重による複合荷重 $(W_W+0.5W_P)$ に対する排気筒の角ダクトと丸ダクトに関する評価結果は表5および表6の通りであり、健全であることを確認した。

表5 排気筒 (角ダクト) における荷重に対する健全性評価結果

			長期荷重 (+ (重貝)			評価結果
			短期荷重	(竜巻)		¥7 }	α , $\beta > 1$: \odot
ダクト	ダカト	ダクト	裕度	<i>α</i>	補強材	断面積	$\gamma \leq 5\%$
種別	サイズ (mm)	材質		E E	裕度:β	縮小率	(ダクト機能影響なし):○
			三 计	# Z # E		: y (%)	× >5%
			间置	画 E			(ダクト機能影響あり):×
批与答 (家ช)	2700×2700	7065H3	91 6	13 1	9 03		(
7FX(1F) (1在7女) 	$\times 3.0t$	505504	7. 10	70.1	٥, ٠٥		

表6 排気筒 (丸ダクト) における荷重に対する健全性評価結果

©	I	61.16	4.50	SUS304	φ 2600×3.0t
(ダクト機能影響あり):×					
$\gamma > 5\%$	(%) λ:		裕度: α	- 1	
(ダクト機能影響なし):○	縮小率	裕度:β	巻)		材質
$\gamma \leq 5\%$	断面積	曲げ	+短期荷重(竜	十年	ダクト + 年
裕度α、β>1:◎	ダクト		荷重 (自重)	長期荷重	長期
評価結果					

- (2) 竜巻防護施設に対する波及的影響の確認結果
 - a. 波及的影響を及ぼし得る施設の評価
 - (a) 当該施設の破損により、竜巻防護施設に機械的な波及的 影響を及ぼし得る施設
 - ①海水ポンプ室クレーン

海水ポンプ室クレーンの高さは16m、海水ポンプ室クレーン係留位置から海水ポンプまでの距離は20mであり、海水ポンプ室クレーンの転倒を考慮しても海水ポンプへ接触しないことから、健全であることを確認した。

- (b) 当該施設の破損により、耐震 S クラス設備に機能的な波 及的影響を及ぼし得る施設
 - ①排気筒およびダクト

評価結果は表7および表8(1)~表8(3)のとおり。

排気筒および丸ダクトについては設計竜巻により生じる 気圧差により損傷せず、健全であることを確認した。

角ダクトのうち、溶接角ダクトについては設計竜巻により生じる気圧差により損傷せず、健全であることを確認した。

角ダクトのうち、ハゼ折角ダクトについては、ダクトサイズ (mm) 1100×1100×0.8t、500×500×0.6t、500×250×0.6tのダクトが設計竜巻により生じる気圧差により、補強部材に発生する応力が許容値を超える結果となった。

これらのダクトについては、補強部材に期待せずダクト本体に発生する応力を評価したところ、いずれのダクトもダクト本体に発生する応力は許容値を満足する結果となり、仮に補強部材が補強機能を失ったとしても、ダクトは損傷しないことを確認した。

なお、仮に補強部材が補強機能を失った場合、ダクトが 大きく変形することが予想されることから、ダクトの断面 積縮小率について評価したところ、縮小率は5%*4以下と小さいことから、安全機能が維持できることを確認した。

その他のハゼ折角ダクトについては補強部材も含め、損傷せず、設計竜巻により生じる気圧差に対して健全であることを確認した。

※4 ファンの性能(全圧)は実機においては仕様値に対して一般的に余裕を有しており、ファンの性能評価として行う圧損計算では、標準的にダクト圧損合計値に10%上乗せして行っている。ダクト系で全ての断面積が5%減少した場合でも、流路圧損の増加は10%程度であることから、安全機能が維持される。

②ダンパ

評価を行った結果、すべてのダンパにおいて裕度は1倍を越えており、設計竜巻により生じる気圧差に対して健全であることを確認した。ダンパの種類毎(高気密ダンパ、空気作動ダンパ(国産)、空気作動ダンパ(輸入)、逆止ダンパ、防火ダンパ(防火兼風量調整ダンパを含む))の代表の評価結果を表9に示す。

③バタフライ弁

アニュラス全量排気弁およびアニュラス少量排気弁の弁体は、圧力標準JIS 5Kの規定を満足していることから弁体の負圧に対する許容値は5kgf/cm²

(=4903.325hPa(1kgf/cm²=980.665hPa)) であり、設計用竜巻により生じる気圧差(43hPa)の負圧に対して裕度は約114倍であることから、設計竜巻により生じる気圧差に対して健全であることを確認した。

④ファン

蓄電池室排気ファンについて評価を行った結果、竜巻の影響によりケーシングに生じる周応力は-0.332 (MPa)であり、許容応力240 (MPa) に対して裕度は約722倍であることから、設計竜巻により生じる気圧差に対して健全であることを確認した。

b. 設計飛来物の評価

①海水ポンプ

浮き上がる設計飛来物のうち海水ポンプに到達する頻度 の高い鋼製材について、海水ポンプへの影響頻度および貫 通評価を実施した。

設計竜巻(69m/s)が発生して、大飯発電所と同規模の施設に襲来する頻度は10⁻⁵/年である。また、海水ポンプに飛来物(鋼製材)が到達する割合は、飛来物の想定される飛散面積に対する多重性を有する海水ポンプに衝突する面積の割合で、10⁻³~10⁻⁴程度となる。さらに別の飛来物が衝突し、海水ポンプが全台機能喪失する割合は、10⁻⁷~10⁻⁸程度となる。

以上より、海水ポンプが破損する割合は10⁻¹² オーダと評価することができ、設計上考慮すべき頻度(10⁻⁷/年)を十分下回るため、海水ポンプへの機能影響はないと評価できる。

なお、浮き上がる飛来物の貫通厚さは表10、表11に示した通りであり、海水ポンプの最小板厚部分3.2mmと比較し、 貫通することを確認した。 また、飛来物対策として、海水ポンプ室設置付近への車の乗入れ管理、資機材保管管理等を行い、竜巻に対する備えの万全を期する。

表7 九ダクトにおける気圧差に対する健全性評価結果

ダクト種別	ダクト サイズ(mm)	ダクト村質	長期荷重(自重)+ 短期荷重(竜巻) 裕度:α	ダクト 断面積 縮小率 ・ (%)	評価結果 $\alpha > 1: 0$ $\gamma \le 5\%$ $(ダクト機能影響なし): 0$
				(0/)	・ソーランの (ダクト機能影響あり):×
低圧丸ダクト (溶接)	ϕ 650×2.3t	SS400	4.50	I	©
低圧丸ダクト (溶接)	ϕ 400×2.3t	SS400	9.00	I	©
低圧丸ダクト (溶接)	ϕ 500×2.3t	SS400	9.00	ı	0
低圧丸ダクト (溶接)	ϕ 300×2.3t	SS400	9.00	I	©
スパイラル低 圧丸ダクト	ϕ 400 \times 0.6t	2098	2.00	ľ	0
溶接特殊低圧 丸ダクト	ϕ 300 \times 2. 3t	SGCC	9.00	I	©

表8(1) 角ダクトにおける気圧差に対する健全性評価結果

評価結果 α 、 $\beta > 1$: © $\gamma \le 5\%$	(ダクト機能影響なし):○ ッ>5% (ダクト機能影響あり):×	0	0	0	0	0	0	0	0
ダクト断面積	縮小率: 3 (%)	I	I	I	I	I	I	I	I
補強材	裕度: β	5.00	2.00	1.66	2.00	2.00	2.50	2.00	3, 33
(自重) + (竜巻) : a	面內荷重	39.44	53. 29	67.46	107.64	98.45	97.42	54. 08	36.05
長期荷重(短期荷重 裕度:	面外荷重	3, 05	3.92	3.90	3.92	4. 23	3.95	3.92	4,09
ダカト	村爾	SUS304	SS400	SS400	SS400	SS400	SS400	SS400	SS400
¥ 7 K	サイズ(mm)	$2700\times2700 \times 3.0t$	$2700\times2700 \times 3.2t$	$3000 \times 2700 \times 3.2t$	$2700\times2100\\ \times 3.2t$	$1500 \times 1100 \times 3.2t$	$2400 \times 2100 \times 3.2t$	$2700 \times 1100 \times 3.2t$	$1800 \times 1600 \times 3.2t$
ダカト	種別	排気筒 (溶接)	低圧角ダクト (溶接)	低圧角ダクト (容接)	低圧角ダクト (容接)	低圧角ダクト (溶接)	低圧角ダクト (溶接)	低圧角ダクト (溶接)	低圧角ダクト (溶接)

※1 補強部材に期待せず、面外荷重を評価※2 知見拡充で使用する設計竜巻による評価値

表8(2) 角ダクトにおける気圧差に対する健全性評価結果

評価結果 α 、 $\beta > 1$: © $\gamma \le 5\%$	(ダクト機能影響なし):○ ッ>5% (ダクト機能影響あり):×	©	©	©	©	©	©	0
ダクト断面積	縮小率: ル(%)				_	_		3.2^{*2}
補強材	裕度: 8	2, 50	2.00	1.11	1.42	1.66	1.66	92.0
(自重) + (竜巻) : a	面內荷重	108.75	355.91	98.35	13.99	26.89	83.95	25.02
長期荷重(短期荷重 裕度	面外荷重	3,94	3.13	2. 63	2, 53	2.75	2.50	2.53 (1.91) **1
X 7 K	村質	SS400	Secc	Secc	Secc	Secc)	2298
XXX	サイズ(mm)	$2436 \times 1218 \times 3.2t$	$1050\times1050 \times 0.84 \times 0.84$	$900 \times 900 \times 000 \times 0.8$ t	$1100 \times 1100 \times 1100 \times 0.8t$	$1000 \times 1000 \times 1000 \times 0.8t$	$1400 \times 1000 \times 1.000 \times 1.000$	$1100 \times 1100 \times 1100 \times 0.8t$
X Y Y	種別	低圧角ダクト (溶接)	ハゼ折高圧角 ダクト	ハゼ折高圧角 ダクト	ハゼ折高圧角 ダクト	ハゼ折高圧角 ダクト	ハゼ折高圧角 ダクト	ハゼ折中圧角 ダクト

※1 補強部材に期待せず、面外荷重を評価※2 知見拡充で使用する設計竜巻による評価値

表8(3) 角ダクトにおける気圧差に対する健全性評価結果

評価結果 α 、 $\beta > 1$: © $\gamma \le 5\%$	(ダクト機能影響なし):○ ッ>5% (ダクト機能影響あり):×	©	0	©	0	©	0	0
ダクト断面積	縮小率: λ(%)	I	3.2^{*2}	I	4. 7*2	I	I	I
補強材	裕度: β	1.11	99 0	1.06	0, 66	1.07	1.42	1.11
(自重) + (竜巻) : a	面內荷重	51.46	142.97	61.26	11.67	66.05	21.18	8.00
長期荷重(短期荷重 裕度	面外荷重	2.61	2.27 (2.27) **1	2.47	2.27 (2.27) **1	2.52	2.54	2.61
Y Y Y	拉	SGCC	SGCC	SGCC	SGCC	2098	SGCC	SGCC
474	サイズ (mm)	$900 \times 900 \times 000 \times 0.8$ t	$500 \times 500 \times 000 \times 0.6$	$400 \times 400 \times$ 0.6t	$500 \times 250 \times 0.6t$	$700 \times 700 \times 00 \times 0.8$ t	800×600× 0.8t	900×500× 0.8t
XVX	種別	ハゼ折中圧角 ダクト	ハゼ折低圧角 ダクト	ハゼ折低圧角 ダクト	ハゼ折低圧角 ダクト	ハゼ折中圧角 ダクト	ハゼ折中圧角 ダクト	ハゼ折中圧角 ダクト

※1 補強部材に期待せず、面外荷重を評価※2 知見拡充で使用する設計竜巻による評価値

表9 ダンパにおける気圧差に対する健全性評価結果(代表)

		フランジ内寸(mm)	ジ 氏 大	F (mm)	オージング	<u>}</u> ا ا	* * * * * * * * * * * * * * * * * * *	評価結果
種類	ダンパ名称	W	×	Н	/ γ / γ / γ / γ / γ / γ / γ / γ / γ / γ	済産:α	イイン 格 落 は、α	裕度α>1:◎ 裕度α≤1:×
古后该班人公	3安全補機室排気第2隔離ダンパ	1210	×	1210	13.70	30.44	58.50	0
シングロ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	34 キッチン排気第 1 隔離ダンパ		φ	305	29.77	67.00	117.00	0
空気作動 ダンパ(国産)	3 補助建屋排気流量調節ダンパ	2410	×	2110	7.23	16.69	70.50	0
空気作動	3格納容器排気止めダンパ	2436	×	1218	7.75	6.38	27.00	0
ダンパ (輸入)	34A 安全補機開閉器室外気取入流量 調節ダンパ	915	×	915	7. 48	2.61	36.00	0
开飙	3A1 ディーゼル発電機室給気ファン 出口逆止ダンパ	1055	×	1055	7.48	3.94	67.50	0
X / X	3A 制御用空気圧縮機室給気ファン 入口逆止ダンパ	202	×	202	14.46	2.08	67.50	0
	3AI ディーゼル発電機室排気 防火ダンパ	1117	×	1976	4.93	4.17	35.25	0
防火ダンパ	3A 制御用空気圧縮機室排気 防火ダンパ	263	×	763	11.42	2.00	47.00	0
	3 蓄電池室排気系 A 充電器室 防火絞りダンパ		ф	405	15.50	3.61	70.50	0

表10 飛来物による鋼板の貫通評価 (水平)

飛来物	鋼製パイプ	鋼製材
飛来物速度(水平)	49 m /s	57m/s
必要最小厚さ	18mm	37mm

表11 飛来物による鋼板の貫通評価(鉛直)

飛来物	鋼製パイプ	鋼製材
飛来物速度(鉛直)	33 m/s	38m/s
必要最小厚さ	11mm	22mm

知見拡充で使用する設計竜巻に対する設備の構造健全性の確認結果

1. 概要

大飯3,4号機において、竜巻設計荷重に対して、設備の構造健全性が維持されて安全機能が維持されることを確認した。

2. 設計 竜巻の特性値

知見拡充で使用する設計竜巻の特性値は表1の通りとした。

				,	
最大	移動	最大	最大	気圧	最大気圧
風速VD	速度 V _T	接線	接線	低下量	低下率
(m/s)	(m/s)	風速	風速	ΔΡ	(dp/dt) _{max}
		V_{Rm}	半径	(hPa)	(hPa/s)
		(m/s)	$R_{m}(m)$		
100	16	84	30	85	45

表1 知見拡充で使用する設計竜巻の特性値

3. 設計飛来物の諸元

設計飛来物の諸元は表 2 の通りとした。

表2 設計飛来物の諸元

不吃 寸 <i>肿</i> 加	棒状	物	板状物	塊丬	大物
飛来物	鋼製	鋼製材	コンクリ	コンテナ	トラック
の種類	パイプ		ート板		
	長さ×直	長さ×幅	長さ×幅	長さ×幅	長さ×幅
サイズ	径	×奥行き	×厚さ	×奥行き	×奥行き
(m)		4.2×0.3	$1.5 \times 1 \times$	2.4×2.6	$5 \times 1.9 \times$
	2×0.05	\times 0.2	0.15	$\times 6$	1.3
質 量	8.4	135	540	2300	4750
(kg)	0.4	155	340	2300	4730
飛散					
距離	741	741	818	743	934
(m) *1					
飛散					
高さ	33	56	0	30	0
(m) *1					

※1 飛散距離、飛散高さは電力共通研究「平成 24 年度 原子力発電 所の竜巻に対する評価方法に関する研究」(竜巻風速 100m/s)

4. 評価対象施設

(1) 竜巻防護施設

「基準地震動及び耐震設計方針指針に係る審査ガイド(仮称)」の重要度分類における耐震 S クラスの設計を要求される設備であり、外殻となる施設により防護が期待できない設備として、以下を抽出した。

- ①海水ポンプ
- ② 排気筒 (建屋外)

(2) 波及的影響を及ぼす施設

a. 当該施設の破損により、竜巻防護施設に機械的な波及的影

響を及ぼし得る施設

当該施設の破損により、竜巻防護施設に機械的な波及的影響を 及ぼして安全機能を喪失させる可能性が否定できない施設とし て、以下を抽出した。

- タービン建屋
- ・海水ポンプ室クレーン
- b. 当該施設の破損により、耐震 S クラス設備に機能的な波及的 影響を及ぼし得る施設

換気・冷却等が必要な耐震Sクラス設備を内包する区画の換気 空調設備の内、排気筒(建屋内)、外気と繋がるダクト、外気と の隔離箇所(ダンパ、バタフライ弁)、外気との隔離箇所までに 設置されているファンとした。

なお、ディーゼル発電機室給気ファンについては、ガラリ内に 設置されており、またファンの入口側にダクトが接続されていな いことから、ファンの内外において気圧差の影響を受け得ないこ とから、評価対象外とした。

評価対象の換気空調設備は表3のとおり。

表 3 評価対象設備

耐震Sクラス設備に波及的影響	評 価 対 象 設 備
を及ぼし得る換気空調系統	計
・排気筒	・排気筒
・アニュラス空気浄化系	
(以下の系統のアニュラス空気	・ダクト
浄化系排気ラインのバウンダ	・ダンパ
リ部を含む	・ バタフライ弁(アニュラス
· 格納容器排気系	全量排気弁およびアニュ
· 補助建屋排気系	ラス少量排気弁)
· 放射線管理室排気系)	
· · · · · · · · · · · · · · · · · · ·	・ダクト
・安全補機室冷却系	・ダンパ
・ディーゼル発電機室換気系	・ダクト
・プイービル 光 电 機 主 換 気 ポ	・ダンパ
・電動補助給水ポンプ室換気系	・ダクト
・电動性的和水がクノ主換スポ	・ダンパ
 ・制御用空気圧縮器室換気系	・ダクト
· 的 仰 角 至 X	・ダンパ
安全補機開閉器室空調系	・ダクト
* 女 王 悀 饿 用 闭 奋 主 仝 詗 术	・ダンパ
	・ダクト
・ 蓄 電 池 室 排 気 系	・ダンパ
· 雷电他主外 X 示	・ファン(蓄電池室排気ファ
	ン)
・中央制御室空調系	・ダクト
- 中大的岬 生 生 調 术	・ダンパ

5. 評価内容

(1) 竜巻防護施設の構造健全性の評価

①海水ポンプ

海水ポンプ及びモータについて、知見拡充で使用する設計竜巻による気圧差荷重(W_P)ならびに風圧力による荷重(W_W)、気圧差荷重(W_P)及び設計飛来物の衝撃荷重(W_M)による複合荷重($W_W+0.5W_P+W_M$)により海水ポンプが転倒する可能性が考えられるため、据付面基礎ボルト、電動機取合ボルト等に発生する応力を算定し、支持構造物の許容応力*2との比較により安全余裕を確認する。

なお、設計飛来物による衝撃荷重(W_M)については、設計飛来物の影響評価を踏まえて、飛来物による衝撃荷重を考慮するかを検討する。

※2 原子力発電所耐震設計技術規程(JEAC4601-2008)の支持 構造物に対する、供用状態Csの許容応力。

②排気筒

排気筒について、設計竜巻による気圧差荷重(W_P)ならびに風圧力による荷重(W_W)、気圧差荷重(W_P)及び設計飛来物の衝撃荷重(W_W)による複合荷重($W_W+0.5W_P+W_W$)を評価する。

なお、設計飛来物による衝撃荷重(W_M)については、設計飛来物の影響評価を踏まえて、飛来物による衝撃荷重を考慮するかを検討する。

評価の方法は、竜巻による負圧を短期荷重とみなし、自重との重ね合わせを考慮して、長期荷重(自重)+短期荷重(竜巻)による応力が許容値を超えない事を確認する。

また応力が許容値を超えた場合には、安全機能が維持できることを確認する。

角ダクトについては、板材に対し長期荷重(自重)+短期荷 重(竜巻)による強度評価を行うとともに、補強部材も評価す る。

丸ダクトについては、長期荷重(自重)+短期荷重(竜巻) による座屈評価および曲げ評価を行う。

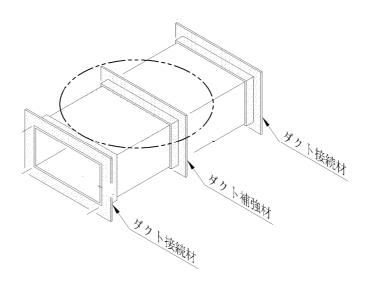


図1 角ダクトのイメージ図

(2) 竜巻防護施設に対する波及的影響

- a. 波及的影響を及ぼし得る施設の評価
- (a) 当該施設の破損により、竜巻防護施設に機械的な波及的 影響を及ぼし得る施設
 - ① タービン建屋

鉄骨造のタービン建屋は、壁や窓等は損傷すると思われるが、主梁・柱は機能を保ち、タービン等の重量機器、主配管は溶接され、支持構造物で固定されており飛散することは考えがたい。タービン建屋から飛来する飛来物による海水ポンプおよび排気筒への飛来物影響としては、剛体で投影断面積が小さく重量もある鋼製材による影響評価で包絡されると考えられる。

②海水ポンプ室クレーン

海水ポンプ室クレーンについては、転倒により海水ポン

プに影響を及ぼす可能性があることから、海水ポンプ室クレーンの高さと海水ポンプ室クレーン係留位置から海水ポンプまでの距離を比較することにより、健全であることを確認する。

(b) 当該施設の破損により、耐震 S クラス設備に機能的な波 及的影響を及ぼし得る施設

換気・冷却等が必要な耐震Sクラス設備を内包する区画の換気空調設備の内、排気筒(建屋内)、外気と繋がるダクト、外気との隔離箇所(ダンパ、バタフライ弁)、外気との隔離箇所までに設置されているファンについて、気圧差に対する健全性を評価する。

各評価方法については以下のとおり。

①排気筒およびダクト

評価対象設備について、ダクト種別(丸ダクト、角ダクト)、口径、板厚を考慮し分類し、設計用竜巻により、それぞれのダクト内外の差圧が85hPaになった場合の評価を行う。

評価の方法は、竜巻による負圧を短期荷重とみなし、自 重との重ね合わせを考慮して、長期荷重(自重)+短期荷 重(竜巻)による応力が許容値を超えない事を確認する。

また応力が許容値を超えた場合には、安全機能が維持できることを確認する。

角ダクトについては、板材に対し長期荷重(自重)+短期荷重(竜巻)による強度評価を行うとともに、補強部材も評価する。

丸ダクトについては、長期荷重(自重)+短期荷重(竜巻)による座屈評価を行う。

②ダンパ

ダンパの構成部材毎(ケーシング、ベーン、シャフト) に評価を行う。知見拡充で使用する設計竜巻により発生するケーシングにかかる最大曲げ応力、ベーンにかかる最大 曲げ応力、シャフト断面にかかる最大せん断応力が、それ ぞれ許容値を超えないことを確認する。

③バタフライ弁

知見拡充で使用する設計竜巻によってバタフライ弁に生 じる圧力が、許容値を超えないことを確認する。

④ファン

知見拡充で使用する設計竜巻の影響によりケーシングに 生じる周応力が許容値を越えないことを確認する。

b. 設計飛来物の評価

(a) 海水ポンプ

海水ポンプに対して、飛来物による影響頻度および貫通 限界を評価する。

飛来物による影響頻度の考え方は、原子炉安全専門審査会「タービンミサイル評価について」昭和52年7月)を参考に、海水ポンプの破損確率が設計上考慮すべき頻度(10⁻⁷/年)を下回ることを確認する。

また飛来物による貫通評価の考え方は、風速100m/sの竜巻に対して、浮き上がる飛来物の貫通を生じないための必要最小厚さと海水ポンプの最小板厚を比較することで確認する。

鋼板の貫通限界厚さはBRL式*3を用いて求める。

 $T^{3/2} = \frac{0.5MV^2}{17400K^2D^{3/2}}$

T:鋼板厚さ (in)

M: ミサイル質量 (1b·s²/ft)

V: ミサイル速度 (ft/s)

D: ミサイル直径 (in)

K:鋼板の材質に関する係数≒1

※3 ISES 7607-3 「軽水炉構造機器の衝撃荷重に関する 調査 その3 ミサイルの衝突による構造壁の損傷 に関する評価式の比較検討」(高温構造安全技術研究 組合)

(b) 排気筒

飛来物に対しては、飛来物の飛散範囲に比し面積が小さく 当たりにくいが、飛来物による影響は、排気筒は板厚が薄く、 貫通等の損傷の可能性がある。

しかしながら、竜巻は排気筒にその安全機能を期待するLOCAのような放射性物質の放出を伴う事故の原因にはならないので、竜巻襲来時においてプラントの安全機能に問題ない。

以上のことから、排気筒への飛来物の評価は実施しない。

6. 評価結果

(1) 竜巻防護施設の構造健全性の確認結果

①海水ポンプ

後述の設計飛来物の評価により、海水ポンプの破損確率は設計上考慮すべき頻度(10⁻⁷/年)を十分下回るため、飛来物による衝撃荷重(W_w)は評価しない。

知見拡充で使用する設計 竜巻による気圧差荷重(W。)ならび

に風圧力による荷重及び気圧差荷重による複合荷重($W_w+0.5W_P$)に対する海水ポンプ及びモータの据付面基礎ボルト、電動機取合ボルト等に関する評価結果は表4の通りであり、健全であることを確認した。

表 4 海水ポンプ及びモータ竜巻影響評価結果

評価部位	材質	発生	応力値	直(MPa)	許容	裕	度
		応力	W _P	W _w +	応力	W_{P}	W _w +
				0.5W _P	(MPa)		0.5W _P
電 動 機 取	SS400	引張	21	29	175	8.33	6.03
合ボルト	(M36)						
電 動 機 支	SS400	引張	30	40	172	5.73	4.30
え台取合	(M36)						
ボルト							
据付面取	SUS304	引張	19	25	153	8.05	6.12
合ボルト	(M42)						
据付面基	SUS304	引張	25	34	153	6.12	4.50
磯ボルト	(M48)						
電動機フ	SS400	曲げ	2	2	282	141.00	141.00
レーム	(t16)						

② 排気筒

飛来物に対しては、飛来物の飛散範囲に比し面積が小さく当たりにくいが、飛来物による影響は、排気筒の板厚は薄く貫通等の損傷を受けることが支配的であるので、複合荷重の算定において衝撃荷重は考慮しない。

なお、竜巻は排気筒にその安全機能を期待するLOCAのような 放射性物質の放出を伴う事故の原因にはならないので、竜巻襲 来時におけるプラントの安全機能に問題はない。

知見拡充で使用する設計竜巻による気圧差荷重 (W_p) ならびに風圧力による荷重及び気圧差荷重による複合荷重 (W_w +0.5 W_p) に対する排気筒の角ダクトと丸ダクトに関する評価結果は表5 および表6の通りであり、健全であることを確認した。

表5 排気筒 (角ダクト) における荷重に対する健全性評価結果

評価結果 α、β>1:◎ <50/	$\gamma \ge 5.0$ (ダクト機能影響なし): \bigcirc $\gamma > 5\%$ (ダクト機能影響あり): \times	0
4 4 X	断面積 縮小率 : ッ(%)	I
雄帝林	/m.x./z 裕度:β	1.53
(自重) + (竜巻) : α	3. 79	
長期荷重 (自重) 短期荷重 (竜巻 裕度: α	面 荷 重	1.45
1 4 4	村質	SUS304
71 <i>4 ,</i> #	$2700\times2700 \times 3.0t$	
H N K	種別	排気筒

表6 排気筒 (丸ダクト) における荷重に対する健全性評価結果

ダクト ダクト 長期荷重(自重) 曲げ 断面積 が $ \le 5\%$ 種別 サイズ(mm) 材質 +短期荷重(竜巻) 裕度: α 縮小率 (ダクト機能影響なし): O 権別 裕度: α : γ (%) γ >5% 体度: α : γ (%) γ >5% イズ(mm) 村質 +短期荷重(竜巻) 裕度: α	©	ĺ	32.7	3.00	SUS304	ϕ 2600 \times 3.0t	排気筒
	評価結果 裕度α、 $\beta > 1: \odot$ $\gamma \le 5\%$ (ダクト機能影響なし): \odot $\gamma > 5\%$ (ダクト機能影響あり): \times	ダクト 断面積 縮小率 : ッ (%)	曲げ 裕庚:α	<u> </u>	ダクト対質	ダクト サイズ (mm)	ダクト 種別

(2) 竜巻防護施設に対する波及的影響の確認結果

- a. 波及的影響を及ぼし得る施設の評価
 - (a) 当該施設の破損により、竜巻防護施設に機械的な波及的 影響を及ぼし得る施設

①タービン建屋

知見拡充で使用する設計竜巻に対しては、竜巻防護施設に隣接してタービン建屋があるが、当該建屋は建築基準法による速度圧設計(300kg/m²)で設計しており、これは設計風速で69.3m/sに相当する。知見知充で使用する設計竜巻でも大きな損壊は受けないと考えられる。鉄骨造のタービン建屋は、壁や窓等は損傷すると思われるが、主梁・柱は機能を保ち、タービン等の重量機器、主配管は溶接され、支持構造物で固定されており飛散することは考えがたい。タービン建屋から飛来する飛来物による海水ポンプおよび排気筒への飛来物影響としては、剛体で投影断面積が小さく重量もある鋼製材による影響評価で包絡されると考えられる。

②海水ポンプ室クレーン

海水ポンプ室クレーンの高さは16m、海水ポンプ室クレーン係留位置から海水ポンプまでの距離は20mであり、海水ポンプ室クレーンの転倒を考慮しても海水ポンプへ接触しないことから、健全であることを確認した。

- (b) 当該施設の破損により、耐震 S クラス設備に機能的な波 及的影響を及ぼし得る施設
 - ①排気筒およびダクト

評価結果は表7および表8(1)~表8(3)のとおり。

排気筒および丸ダクトについては知見拡充で使用する設 計竜巻により生じる気圧差により損傷しないことを確認し た。

角ダクトのうち、溶接角ダクトについては、ダクトサイズ (mm) 3000×2700×3.2tのダクトが知見拡充で使用する設計 竜巻により生じる気圧差により補強部材に発生する応力が許容値を超える結果となった。

このダクトについては、補強部材には期待せず、ダクト本体に発生する応力を評価したところ、ダクト本体に発生する応力は許容値を満足する結果となり、仮に補強部材が補強機能を失ったとしてもダクトとしての機能は喪失しないことを確認した。

なお、仮に補強部材が補強機能を失った場合、ダクトが大きく変形することが予想されることから、ダクトの断面積の縮小率について評価したところ、縮小率は5%*以下と小さいことから、安全機能が維持できることを確認した。

角ダクトのうち、ハゼ折角ダクトについては、ダクトサイズ (mm) 900×900×0.8t、1100×1100×0.8t、1000×1000×0.8t、1400×1000×1.0t、500×500×0.6t、400×400×0.6t、500×250×0.6t、700×700×0.8t、800×600×0.8t、900×500×0.8tのダクトが知見拡充で使用する設計竜巻により生じる気圧差により補強部材に発生する応力が許容値を超える結果となった。

これらのダクトについては、補強部材には期待せず、ダクト本体に発生する応力を評価したところ、いずれのダクトもダクト本体に発生する応力は許容値を満足する結果となり、仮に補強部材が補強機能を失ったとしてもダクトとしての機能は喪失しないことを確認した。

なお、仮に補強部材が補強機能を失った場合、ダクトが大きく変形することが予想されることから、ダクトの断面積の縮小率について評価したところ、縮小率は5%*4以下と小さいことから、安全機能が維持できることを確認した。

その他の溶接角ダクトおよびハゼ折角ダクトについては 補強部材も含め、損傷せず、知見拡充で使用する設計竜巻 により生じる気圧差に対して健全であることを確認した

※4 ファンの性能(全圧)は実機においては仕様値に対して一般的に余裕を有しており、ファンの性能評価として行う圧損計算では、標準的にダクト圧損合計値に10%上乗せして行っている。ダクト系で全ての断面積が5%減少した場合でも、流路圧損の増加は10%程度であることから、安全機能が維持される。

②ダンパ

知見拡充で使用する設計竜巻に対する評価を行った結果、すべてのダンパにおいて裕度は1倍を越えており、知見拡充で使用する設計竜巻により生じる気圧差に対して健全であることを確認した。ダンパの種類毎(高気密ダンパ、空気作動ダンパ(国産)、空気作動ダンパ(輸入)、逆止ダンパ、防火ダンパ(防火兼風量調整ダンパを含む))の代表の評価結果を表9に示す。

③バタフライ弁

アニュラス全量排気弁およびアニュラス少量排気弁の弁体は、圧力標準JIS 5Kの規定を満足していることから弁体の負圧に対する許容値は5kgf/cm²

(=4903.325hPa(1kgf/cm²=980.665hPa))であり、知見拡充で使用する設計用竜巻により生じる気圧差(85hPa)の負圧に対して裕度は約57倍であることから、知見拡充で使用する設計竜巻により生じる気圧差に対して健全であることを確認した。

④ファン

蓄電池室排気ファンについて評価を行った結果、竜巻の影響によりケーシングに生じる周応力は-0.656 (MPa)であり、許容応力240 (MPa) に対して裕度は約365倍であることから、設計竜巻により生じる気圧差に対して健全であることを確認した。

b. 設計飛来物の評価

①海水ポンプ

浮き上がる設計飛来物のうち到達する頻度が高い鋼製材について、海水ポンプへの影響頻度および貫通評価を実施した。

知見拡充で使用する設計竜巻が発生して、大飯発電所と同規模の施設に襲来する頻度は10⁻⁵/年よりも低いと考えられる。また海水ポンプに飛来物(鋼製材)が到達する割合は、飛散距離から想定される飛来物の飛散面積に対する多重性を有する海水ポンプの面積の割合で、10⁻⁴~10⁻⁵程度となる。さらに別の飛来物が衝突し、海水ポンプが全台機能喪失する割合は、10⁻⁹~10⁻¹⁰程度となる。

以上より、海水ポンプの破損確率は10⁻¹⁴ オーダと評価することができ、設計上考慮すべき頻度(10⁻⁷/年)を十分下回るため、海水ポンプへの機能影響はないと評価できる。

なお、浮き上がる飛来物の貫通厚さは表10、表11に示した通りであり、海水ポンプの最小板厚部分3.2mmと比較し、 貫通することを確認した。

また、飛来物対策として、海水ポンプ室設置付近への車の乗入れ管理、資機材保管管理等を行い、竜巻に対する備

えに万全を期する。

表7 丸ダクトにおける気圧差に対する健全性評価結果

評価結果	$\alpha > 1: \bigcirc$ $\gamma \le 5\%$ (ダクト機能影響なし): \bigcirc $\gamma > 5\%$ (ダクト機能影響なり): \times	0	0	0	0	0	
	ダクト 断面積 縮小率 : y (%)	I	-	_	_	-	I
	長期荷重(自重)+短期荷重(竜巻) 巻) 裕度:α	3.00	9.00	4. 50	9.00	1.04	9.00
	ダクト村質	SS400	SS400	SS400	SS400	2298	2298
	ダクト サイズ(mm)	ϕ 650×2.3t	ϕ 400 \times 2. 3t	ϕ 500 \times 2. 3t	ϕ 300 \times 2. 3t	ϕ 400 \times 0.6 t	ϕ 300 \times 2. 3t
	ダクト種別	低圧丸ダクト (溶接)	低圧丸ダクト (溶接)	低圧丸ダクト (溶接)	低圧丸ダクト (溶接)	スパイラル低 圧丸ダクト	容接特殊低圧 丸ダクト

表8(1) 角ダクトにおける気圧差に対する健全性評価結果

ダカト	X V X	ダカト	長期荷重 短期荷重 裕度	(自重) + (竜巻) : α	補強材	ダクト断面積	評価結果 α 、 $\beta > 1$: ⑤ $\gamma \le 5\%$
種別	サイズ (mm)	材質	面外荷重	面內荷重	裕度:β	縮小率 : y (%)	(ダクト機能影響なし): ○ ッ>5% (ダクト機能影響あり): ×
排気筒(溶接)	$2700\times2700 \times 3.0t$	SUS304	2.13	36. 26	2.5	I	©
低圧角ダクト (溶接)	$2700\times2700 \times 3.2t$	SS400	2.74	50. 11	1.11	I	©
低圧角ダクト (溶接)	$3000 \times 2700 \times 3.2t$	SS400	2.73 (2.45) *1	96 . 29	06.0	1.7	0
低圧角ダクト (溶接)	$2700\times2100 \times 3.2t$	SS400	2.74	102.72	1.11	l	©
低圧角ダクト (溶接)	$1500 \times 1100 \times 3.2t$	SS400	2.96	97.18	1.11	I	©
低圧角ダクト (溶接)	$2400\times2100 \times 3.2t$	SS400	2.76	93. 48	1.42	I	©
低圧角ダクト (溶接)	$2700\times1100\\ \times 3.2t$	SS400	2.74	52.82	1.11	I	©
低圧角ダクト (溶接)	$1800 \times 1600 \times 3.2t$	SS400	2.85	35.24	2.50		0

※1 補強部材に期待せず、面外荷重を評価

表8(2) 角ダクトにおける気圧差に対する健全性評価結果

長期荷重(自重) + 評価結果 短期荷重(竜巻) ダクト α 、 $\beta > 1: \odot$ 裕度: α 補強材 断面積 $\gamma \le 5\%$	格度:β 縮小率 (ダクト機能影響なし):○ 面外荷重 面内荷重 1γ(%)	2.76 106.20 1.42 — ©	2.19 290.81 3.33 — ©	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.66
長期荷 短期 ダクト	材質	SS400 2.76	SGCC 2.19	$SGCC \qquad 1.74 $ (1.34)	SGCC 1.66 (1.24)	SGCC 1.81 (1.28)	SGCC 1.67 (1.60)	1.66
X VX	サイズ(mm)	$2436 \times 1218 \times 3.2t$	$1050 \times 1050 \times 1050 \times 0.8t$	$900 \times 900 \times 000 \times 0$.8t	$1100 \times 1100 \times 1100 \times 0.8t$	$1000 \times 1000 \times 1000 \times 0.8t$	$1400 \times 1000 \times 1.0t$	1100×1100
X Y Y	種別	低圧角ダクト (溶接)	ハゼ折高圧角 ダクト	ハゼ折高圧角 ダクト	ハゼ折高圧角 ダクト	ハゼ折高圧角 ダクト	ハゼ折高圧角 ダクト	ハゼ折中圧角

※1 補強部材に期待せず、面外荷重を評価

表8(3) 角ダクトにおける気圧差に対する健全性評価結果

評価結果 α 、 $\beta > 1$: © $\gamma \le 5\%$	(ダクト機能影響なし):○ ッ>5% (ダクト機能影響あり):×	0	0	0	0	0	0	0
ダクト断面積	縮小率: 3 (%)	3.1	3.2	3.0	4.7	2.8	3.5	4.3
補強材	裕度:β	89.0	0.34	0.52	0.35	99.0	92.0	89.0
(自重) + (竜巻) : α	面內荷重	73.93	133.51	114.98	11.30	239. 79	32. 25	12.24
長期荷重(短期荷重 裕度	面外荷重	1.73 (1.33) **1	1.50 (1.50) **1	1.65 (1.65) **1	1.50 *1	1.68 (1.48) **1	1.69 (1.40) *1	1.73 (1.33) *1
Ĭ, Ž, Š,	村	229S	209S	229S	2298)))S	229S	229S
ダカト	サイズ (mm)	$900 \times 900 \times 000 \times 0.8$ t	$500 \times 500 \times 00 \times 0.6$	$400\times400\times$	$500 \times 250 \times 0.6t$	$700\times700\times$	800×600× 0.8t	$900 \times 500 \times 000 \times 0.8$ t
ダカト	種別	ハゼ折中圧角 ダクト	ハゼ折低圧角 ダクト	ハゼ折低圧角 ダクト	ハゼ折低圧角 ダクト	ハゼ折中圧角 ダクト	ハゼ折中圧角 ダクト	ハゼ折中圧角 ダクト

※1 補強部材に期待せず、面外荷重を評価

表9 ダンパにおける気圧差に対する健全性評価結果(代表)

	_							
		フラン	フランジ内寸(mm)	F(mm)	ケーシング	ンして	イトイン	評価結果
種類	ダンパ名称	W	×	Н	,	裕度:α	裕度:α	裕度 $\alpha > 1$: ⑤ 裕度 $\alpha \le 1$: ×
	3安全補機室排気第2隔離ダンパ	1210	×	1210	7.40	16.11	39.00	0
	34 キッチン排気第 1 隔離ダンパ		-	305	16.75	38. 28	117.00	0
空気作動 ダンパ(国産)	3 補助建屋排気流量調節ダンパ	2410	×	2110	4.09	9.04	47.00	0
空気作動	3格納容器排気止めダンパ	2436	×	1218	4.34	3.28	13.50	0
ダンパ (輸入)	34A 安全補機開閉器室外気取入流量 調節ダンパ	915	×	915	4.01	1.36	18.00	0
刊利	3A1 ディーゼル発電機室給気ファン 出口逆止ダンパ	1055	×	1055	4.01	2.04	45.00	0
ガンパ	3A 制御用空気圧縮機室給気ファン 人口逆止ダンパ	902	×	202	7.75	1.08	45.00	0
	3A1 ディーゼル発電機室排気 防火ダンパ	1117	×	1976	2.67	2.17	23.50	0
防火ダンパ	3A 制御用空気圧縮機室排気 防火ダンパ	892	×	763	6.02	1.05	28.20	0
	3 蓄電池室排気系 A 充電器室 防火絞りダンパ		φ	405	8.34	1.87	35.25	0

表10 飛来物による鋼板の貫通評価 (水平)

The state of the s			
飛来物	鋼製パイプ	鋼製材	コンテナ
飛来物速度(水平)	49m/s	57m/s	60m/s
必要最小厚さ	18mm	37mm	8mm

表11 飛来物による鋼板の貫通評価(鉛直)

飛来物	鋼製パイプ	鋼製材	コンテナ
飛来物速度(鉛直)	33m/s	38m/s	40m/s
必要最小厚さ	11mm	22mm	5mm

6 . 大飯発電所 3,4 号機における原子力発電所の内部溢水影響評価につい	て

「原子力発電所の内部溢水影響評価ガイド」(案)に対する評価結果

1. 概要

大飯 3、4 号機については、発電所建設の設計段階において溢水影響を考慮した機器配置、配管設計を実施しており、具体的には重要度の特に高い安全機能を有する系統については独立した区画への分散配置や入口堰の設置、基礎高さへの考慮等を実施するとともに、各建屋最下層に設置されたサンプに集積し排水が可能な設計としている。

今回、「原子力発電所の内部溢水影響評価ガイド(案)」(以下、「本ガイド案」という)が示されたことから、本ガイド案に従い原子炉施設内部で発生が想定される溢水に対して、重要度の特に高い安全機能を有する系統の安全機能、並びに使用済燃料ピットの冷却、 遮へい機能が維持できることを確認した。

以下に評価の結果を示す。

2. 溢水から防護すべき対象設備の抽出

重要度の特に高い安全機能を有する系統、並びに使用済燃料ピットの冷却・給水機能を有する系統を抽出し、それら系統から防護すべき対象設備(以下、「防護対象設備」という)を抽出した。

2.1 重要度の特に高い安全機能を有する系統

原子炉を高温停止でき、引き続き低温停止並びに放射性物質の閉じ込め機能を維持するために必要な系統を抽出した。併せて、溢水に起因する原子炉外乱に対処するために必要な系統を抽出した。

2.2 使用済燃料ピットの冷却・給水機能を有する系統

使用済燃料ピットの冷却機能および放射線の遮へい機能を維持するために必要となる使用済燃料ピット冷却系統および給水系統を抽出した。

2.3 溢水から防護すべき対象設備の抽出

2.1,2.2 で抽出した系統の機能を維持するために必要となる設備を防護対象設備として抽出した。

なお、原子炉格納容器内に設置される重要度の特に高い安全機能を有する設備は、原子炉冷却材喪失(LOCA)時の原子炉格納容器内の状態を考慮した耐環境仕様としているため、防護対象設備から除外した。

(添付資料1)重要度の特に高い安全機能を有する系統

(添付資料2)使用済燃料ピットの冷却・給水機能を有する系統

(添付資料3)防護対象設備リスト

3. 溢水源と溢水経路

防護対象設備が設置されている原子炉周辺建屋、制御建屋から溢水源となりうる機器を抽出した。

また、これら建屋を対象に、床面開口部(機器ハッチ、階段)、および、溢水影響評価において期待することのできる設備(水密扉や堰など)の抽出を行い、溢水経路を設定した。

廃棄物処理建屋から原子炉周辺建屋への流入経路については、堰 や水密扉、床ドレンの逆流防止弁を設置していることから想定する 必要はないことを確認した。

タービン建屋や屋外の溢水源については、「7.防護対象設備が設置されている建屋の外からの溢水影響」において、防護対象設備への影響がないことを確認した。

(添付資料4)溢水源の抽出

(添付資料5)溢水経路概念図

(添付資料6)溢水影響評価において期待することができる設備

4.原子炉施設の溢水影響評価

本ガイド案に従い、発生要因別に以下の溢水について影響を評価した。

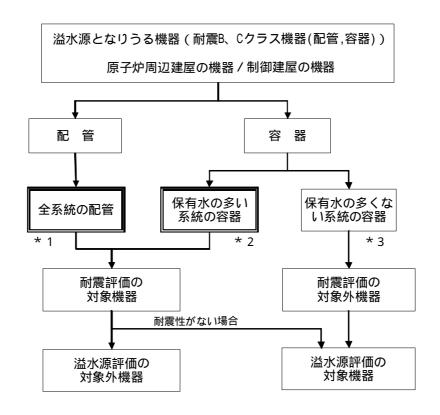
- (1)溢水の影響を評価するために想定する機器の破損等により生じる溢水
- (2)発電所内で生じる異常状態(火災を含む)の拡大防止のために設置される系統からの放水による溢水
- (3)地震に起因する機器の破損等により生じる溢水
- 4.1 溢水の影響を評価するために想定する機器の破損等により生じ る溢水

配管の破損は、防護対象設備が施設されている原子炉周辺建屋、制御建屋および隣接する主蒸気・主給水管室とブローダウン室に施設されている配管を対象に、内包する流体のエネルギーに応じて高エネルギー配管および 低エネルギー配管の2種類に分類し、発生応力に応じた破損を想定し、没水、被水、蒸気による影響評価により防護対象設備が機能喪失しないことを確認した。

(添付資料7)想定破損等により生じる溢水影響評価

4.2 発電所内で生じる異常状態(火災を含む)の拡大防止のために設置される系統からの放水による溢水

本ガイド案に従い、火災時の消火水系統からの放水による溢水を想定し、防護対象設備に対する影響を評価した。


防護対象設備が設置されている原子炉周辺建屋および制御建屋には自動作動するスプリンクラーが設置されていないことから、消火栓による消火活動にともなう放水を溢水源として想定した。

消火活動の放水時間については原則として3時間とした。ただし、 火災源が小さいエリアについては「火災荷重」および「等価時間」 を考慮し、0.5~1.5時間とした。 各防護対象設備が設置されているエリアにおける消火水の滞留 面積を評価し、消火活動による溢水量から算出される溢水水位と、 防護対象設備の機能損失高さを比較することで、防護対象設備が機 能喪失に至らないことを確認した。

- (添付資料8)消火活動に係る時間設定の考え方
- (添付資料9)消火栓からの放水による溢水影響評価
- (添付資料10)消火栓からの放水による溢水経路図(代表例)
- 4.3 地震に起因する機器の破損等により生じる溢水
- 4.3.1 溢水源として想定する対象機器の抽出

本ガイド案に従い、流体を内包する機器(配管、容器)のうち、 基準地震動による地震力によって破損が生じうる機器を溢水源と して想定した。なお、耐震 S クラス機器については、基準地震動に よる地震力によって破損は生じないことから溢水源として想定し ない。また、耐震 B,C クラス機器のうち、基準地震動に対して耐震 性を有するものは溢水源として想定しない。

地震時に溢水源として想定する対象機器の抽出フローを図 -1 に示す。

* 1:補助給水系統、原子炉補機冷却水系統、化学体積制御系統、空調用冷水設備系統、 1次系洗浄水系統、1次系放射性機器ドレン系統、1次系放射性床ドレン系統、 消火水系統、主蒸気・給水系統、1次系補給水系統、燃料取替用水系統、燃料ピット 冷却浄化系統、蒸気発生器ブローダウン系統、安全注入系統、1次系試料採取系統、 換気空調系統、液体廃棄物処理系統、固体廃棄物処理系統、補助蒸気系統

* 2:体積制御タンク、非再生熱交換器、封水冷却器、原子炉周辺建屋サンプポンプ、原子炉周辺建屋サンプタンク、使用済燃料ピット冷却器、使用済燃料ピットポンプ、使用済燃料ピット脱塩塔、使用済燃料ピットフィルタ、ほう酸補給タンク

* 3:1次系薬品タンク、樹脂タンク、冷却材脱塩塔入口フィルタ、冷却材陽イオン脱塩塔 他

図 -1 溢水源として想定する対象機器の抽出フロー

4.3.2 耐震 B,C クラス機器の耐震性評価方法および評価結果

図 -1 のフロー図に基づき、原子炉周辺建屋および制御建屋に設置されている耐震 B、C クラスの配管および溢水保有水量の多い系統の容器について、耐震 S クラス機器と同様の評価手法を用いて構造強度評価を実施し、地震時に溢水源として想定する機器を抽出するとともに、使用済燃料ピットのスロッシングも考慮し、原子炉周辺建屋および制御建屋における溢水量を表 -1 のとおり算出した。

表 - 1 地震時に想定する溢水量

	溢水量	
原子炉周	辺 建 屋	制御建屋
3 号	4 号	
72.44m³	72.44m³	68.8m³

(添付資料11)耐震B、Cクラス機器の耐震評価方法および評価結果

(添付資料12)地震時に溢水源として想定する機器リスト

(添付資料13)使用済燃料ピットのスロッシングによる溢水量評価

4.3.3 溢水影響評価

溢水量から算出される溢水水位と、防護対象設備の機能損失高さを比較することで、防護対象設備が機能喪失に至らないことを確認した。

(添付資料 1 4) 溢水経路、溢水水位および機能喪失高さの考え方 (添付資料 1 5) 地震に起因する溢水影響評価(溢水経路図含む)

5. 使用済燃料ピットの溢水影響評価

使用済燃料ピット冷却および給水系統の防護対象設備については、4.原子炉施設の溢水影響評価において機能喪失しないことを確認している。

したがって、ここでは、使用済燃料ピットからのスロッシングによる最大溢水量に対し、ピット冷却(保安規定で定めた水温 65 以下)および遮へいに必要な水位が確保されていることを確認した。

5.1 使用済燃料ピットのスロッシングによる水位低下の評価 基準地震動 Ss における使用済燃料ピットのスロッシングによる 最大溢水量を表 -2 に示す。

表 -2 スロッシングによる最大溢水量

5.2 使用済燃料ピットの冷却機能・遮へい機能維持の確認 使用済燃料ピットからの溢水量がピット外に流出した際の使用 済燃料ピット水位を求め、ピット冷却(保安規定で定めた水温 65)に必要な水位、および使用済燃料の遮へいに必要な水位が確 保されていることを確認した。確認結果を表 -3,表 -4 に示す。

表 -3 溢水時における使用済燃料ピットの冷却機能維持の評価結果

溢水時のピット水位	冷却に	評価
	必要な水位	結 果
11.98m	10.99m	
(EL.33.13m)	(EL.32.14m)	

使用済燃料ピットポンプ吸込側のピット接続配管の上端レベル

表 -4 溢水時における使用済燃料ピットの 遮へい機能維持の評価結果

∺→□ ↑ ₽ ↓ L → Æ	遮へいに	評価
溢水時のピット水位	必要な水位	結 果
11.98m	8.72m	
(EL.33.13m)	(EL.29.87m)	

(添付資料13)使用済燃料ピットのスロッシングによる溢水量評価

6. 海水ポンプエリアの溢水影響評価

溢水が海水ポンプエリアに滞留したと想定しても防護対象設備の機能喪失高さまで到達しないことを確認した。確認結果を表 -2 に示す。なお、基準津波による設計津波高さは 3、4 号機海水ポンプ室前で EL.2.54m と評価しており、防護対象設備への影響がないことを確認している。

表 -5 海水ポンプエリアの評価結果

	機能喪失高さ	溢水水位	評価結果
海水ポンプ	EL.4.65m	EL.3.03m	

(添付資料 1 6) 海水ポンプエリアの溢水影響評価

7. 防護対象設備が設置されている建屋の外からの溢水影響

タービン建屋、屋外タンク、湧水サンプの溢水が、防護対象設備の設置されている原子炉周辺建屋および制御建屋に及ぼす影響を確認した。

7.1 タービン建屋からの溢水影響

地震によりタービン建屋に設置されている循環水管の伸縮継手や2次系設備が破損することで生じる溢水を想定し、隣接する制御建屋に及ぼす溢水影響を確認した。

循環水ポンプが停止するまでの間に生じる溢水量およびタービン建屋内の保有水量を合算して求めたタービン建屋の溢水は地下部に滞留し、制御建屋への浸水高さを下回ることを確認した。確認結果を表 -6 に示す。

なお、基準津波による設計津波高さは 3、4 号機循環水ポンプ室前で EL.2.85m と評価されるため津波が地上を遡上することはなく、また、循環水管を経由したタービン建屋への流入量は循環水ポンプが停止するまでの間に生じる溢水量に比べて十分小さい。

表 -6 タービン建屋の評価結果

送水水水	制御建屋への	☆ (本 4 = 日	
溢水水位	浸水高さ	評価結果	
EL.約 8.5m	EL.13.8m		

(添付資料17)タービン建屋からの溢水影響

7.2 屋外タンクからの溢水影響

屋外タンクが地震により破損しないことを確認した。また、接続配管の破損を想定した溢水が原子炉周辺建屋周囲まで到達しないことを確認した。

(添付資料18)屋外タンクからの溢水影響

7.3 湧水サンプからの溢水影響

湧水サンプの出入口扉を水密扉としていることから、湧水サンプからの溢水が原子炉周辺建屋に流入することはないことを確認した。

(添付資料19)湧水サンプからの溢水影響

添付資料

添付資料 1	重要度の特に高い安全機能を有する系統
添付資料 2	使用済燃料ピットの冷却・給水機能を有する系統
添付資料3	防護対象設備リスト
添付資料4	溢水源の抽出
添付資料 5	溢水経路概念図
添付資料 6	溢水影響評価において期待することができる設備
添付資料7	想定破損等により生じる溢水影響評価
添付資料8	消火活動に係る時間設定の考え方
添付資料9	消火栓からの放水による溢水影響評価
添付資料10	消火栓からの放水による溢水経路図(代表例)
添付資料11	耐震 B、 C クラス機器の耐震評価方法および評価結果
添付資料12	地震時に溢水源として想定する機器リスト
添付資料13	使用済燃料ピットのスロッシングによる溢水量評価
添付資料14	溢水経路、溢水水位および機能喪失高さの考え方
添付資料15	地震に起因する溢水影響評価(溢水経路図含む)
添付資料16	海水ポンプエリアの溢水影響評価
添付資料17	タービン建屋からの溢水影響
添付資料18	屋外タンクからの溢水影響
添付資料19	湧水サンプからの溢水影響

重要度の特に高い安全機能を有する系統

1.はじめに

溢水の影響評価にあたっては、発電所内で発生した溢水に対して、重要度の特に高い安全機能を有する系統が、その安全機能を失わないこと(多重化された系統が同時にその機能を失わないこと)を確認することとしているが、溢水により原子炉に外乱が及び、かつ、安全保護系、原子炉停止系の作動を要求される場合には、その影響(溢水)を考慮する必要がある。

これらの要求を踏まえ、以下の設備を溢水の防護対象設備とする。

原子炉の高温停止及び低温停止に必要な設備

溢水に起因する原子炉外乱に対処するために必要な設備本資料は、上記の防護対象設備の抽出の考え方をまとめたものである。

尚、格納容器内に設置される設備のうち、重要度の特に高い安全機能を有する系統は、原子炉冷却材喪失(LOCA)時の格納容器内の状態(温度・圧力条件及び溢水影響)を考慮した耐環境仕様であるため、溢水の防護対象設備からは除外する。

2. 原子炉の高温停止及び低温停止に必要な設備

図 -1 に原子炉を低温停止に移行する際のフローを示す。原子炉の高温停止及び低温停止に必要な機能は以下の通りであり、これらの機能を達成するために必要な設備を溢水防護の対象に選定する。

- ・原子炉停止:原子炉停止系(制御棒)
- ・ほう酸添加:原子炉停止系
 - (化学体積制御系のほう酸水注入機能)
- ・崩壊熱除去:補助給水系、主蒸気系、余熱除去系
- ・1 次系減圧:加圧器逃がし弁

(及び原子炉補機冷却水系等、上記系統の関連系)

- 3. 溢水に起因する原子炉外乱に対処するために必要な設備
 - (1)溢水評価上考慮すべき原子炉外乱

旧発電用軽水型原子炉施設の安全評価に関する審査指針を参考に、過渡事象及び事故を対象として、溢水により、発生する可能性のある原子炉外乱を表 -1 及び表 -2 に整理する。尚、表 -1 及び表 -2 では、原子炉冷却材喪失(LOCA)のように、溢水によって発生する事象ではないが、溢水の原因となり得る事象であるため、溢水評価上考慮すべき事象も含めている。

表 -1 溢水によって発生する起因事象の抽出 (運転時の異常な過渡変化)

起因事象	考慮	スクリーンアウトする理由
	要否	
原子炉起動時における制御棒		
の異常な引き抜き		
出力運転中の制御棒の異常な		
引き抜き		
制御棒の落下及び不整合		
原子炉冷却材中のほう素の異		
常な希釈		
原子炉冷却材流量の部分喪失		
原子炉冷却材系の停止ループ	-	停止ループの低温の冷却材
の誤起動		が炉心に注入され、炉心に正
		の反応度が添加された後の
		反応度フィードバック効果
		により原子炉出力は低下し
		整定する。
		このように、本事象では対処
		設備は不要であるため、溢水
		評価上考慮不要
外部電源喪失	-	外部電源喪失により常用電
		源が喪失することから、「主
		給水流量喪失」及び「原子炉
		冷却材流量の喪失」に包絡さ
		れる
主給水流量喪失		
蒸気負荷の異常な増加	-	蒸気負荷が増加し、炉心に正
		の反応度が添加された後の

·	
	反応度フィードバック効果
	により原子炉出力は抑制さ
	れ整定する。
	このように、本事象では対処
	設備は不要であるため、溢水
	評価上考慮不要
2次冷却系の異常な減圧	
蒸気発生器への過剰給水	
負荷の喪失	
原子炉冷却材系の異常な減圧	
出力運転中の非常用炉心冷却	
系の誤起動	

表 -2 溢水によって発生する起因事象の抽出(事故)

起因事象	考慮	スクリーンアウトする理由
	要否	
原子炉冷却材喪失(LOCA)		溢水の原因となり得る事象
		であるため、対象として考慮
		する。
原子炉冷却材流量の喪失		
原子炉冷却材ポンプの軸固着		溢水の発生によって原子炉
	-	冷却材ポンプの回転軸は固
		着しない。
主給水管破断		溢水の原因となり得る事象
		であるため、対象として考慮
		する。
主蒸気管破断		同上
制御棒飛び出し		同上
蒸気発生器伝熱管破損		溢水の発生によって蒸気発
	-	生器の伝熱管は破損しない。

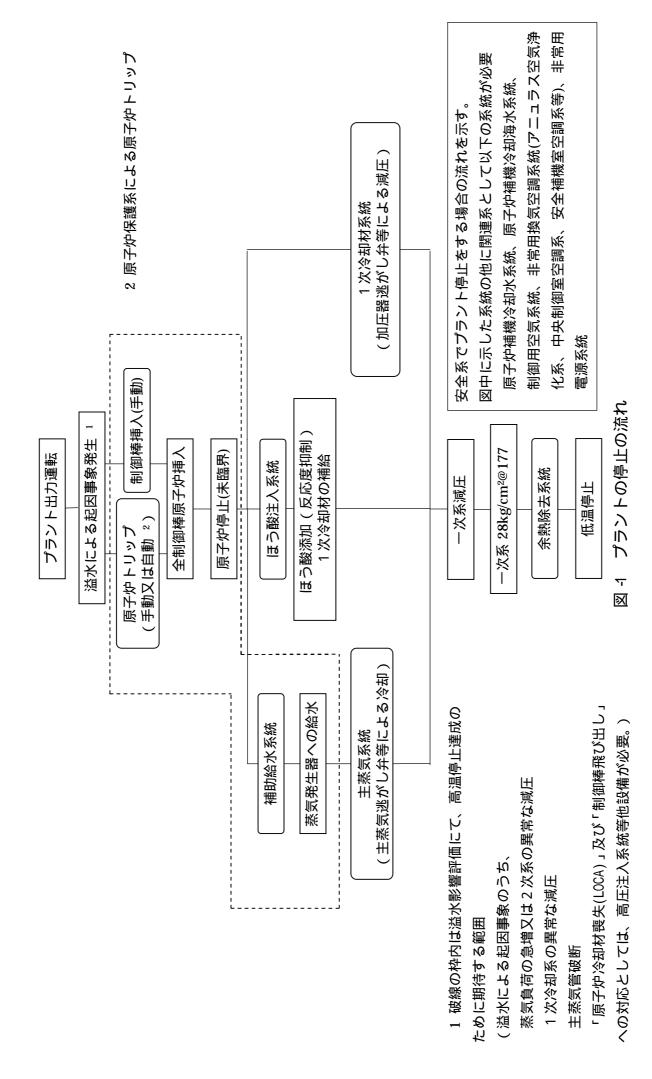
(2)溢水評価上考慮すべき原子炉外乱に対処するための系統設備

表 -1 及び表 -2 に示す溢水評価上考慮すべき原子炉外乱に対処するための系統設備を表 -3 に示す。

表 -3 の ~ の起因事象で原子炉が自動停止する場合は、通常の高温停止に必要な系統(安全保護系、原子炉停止系及び補助給水系)により、原子炉を冷却していくため、これらの系統を溢水防護の対象に選定する。

一方、 ~ のような過冷却事象及び 1 次系の減圧事象では、1 次系の圧力低下等を伴うため、高圧注入系が自動で動作する可能性があり、前述の原子炉を高温停止まで冷却する系統に高圧注入系を加えて溢水防護の対象に選定する。

また、原子炉冷却材喪失(LOCA)等では、炉心の冷却及び格納容器の冷却・減圧・隔離のため、低圧注入系、格納容器スプレイ系及び格納容器隔離弁を加えて溢水防護の対象に選定する。


なお、これらの系統により事象を収束させた後には、LOCA 等 1 次冷却系統の健全性が損なわれる事象を除き、余熱除去系等を用 いて低温停止に移行する(図 -1 参照)。

この一連の対応により、原子炉を「止める」、「冷やす」、「閉じ込める」の機能が果たされる。

表 -3 溢水評価上想定する事象とその対処系統

溢水評価上想定する事象	左記事象に対する	備 考
	対 処 機 能	(対象系統)
「原子炉起動時における制	・原子炉トリップ	・安全保護系
御棒の異常な引き抜き」「出	・補助給水	・原 子 炉 停 止
力運転中の制御棒の異常な		系
引き抜き」「制御棒の落下及		・補 助 給 水 系
び不整合」		
「原子炉冷却材中のほう素の		*1 主給水バイ
異常な希釈」		パス制御弁開
(ほう素濃度制御系異常)		*2 復水ポンプ
「原子炉冷却材流量の部分喪		停止、主給水
失」及び「原子炉冷却材流量		制 御 弁・隔 離
の喪失」		弁閉
(1 次冷却材ポンプ停止)		*3 タービント
蒸気発生器への過剰給水		リップ
(主給水制御弁開他*1)		
主給水流量喪失		
(主給水ポンプ停止他*2)		
負荷の喪失		
(主蒸気隔離弁閉他*3)		
出力運転中の非常用炉心		
冷却系の誤起動		
主給水管破断		
2次冷却系の異常な減圧	上記機能に加え、	上記系統に加
(タービンバイパス弁開他*4)	・高圧注入	え、
原子炉冷却材系の異常な		・高圧注入系
減 圧		*4 主蒸気逃が
(加圧器逃がし弁開*5)		し弁開、ター

主蒸気管破断		ビン蒸気加減
		弁開
		*5 加圧器逃が
		しスプレイ弁
		開
		加圧器補助
		スプレイ弁開
「原子炉冷却材喪失(LOCA)」	上記機能に加え、	上記系統に加
及び「制御棒飛び出し」	・低圧注入	え、
	・格納容器スプレ	低圧注入系
	1	・格 納 容 器 ス
	・格納容器隔離	プレイ系
		・格 納 容 器 隔
		離弁

使用済燃料ピットの冷却・給水機能を有する系統

1.はじめに

溢水の影響評価にあたっては、発電所内で発生した溢水に対して、使用済燃料ピットの冷却機能および遮蔽機能を維持するために必要となる系統を抽出する。

2. 使用済燃料ピットの冷却・給水機能に必要な設備

使用済燃料ピットを保安規定で定めた水温(65 以下)に維持する必要があるため、使用済燃料ピット冷却系統を抽出した。

また、使用済燃料ピットの放射線を遮へいするための水量を維持する必要があるため、使用済燃料ピット給水系統を抽出した。

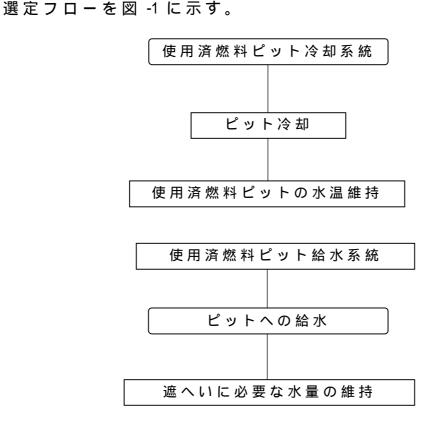


図 -1 使用済燃料ピットの冷却・給水機能を有する系統

3号機防護対象設備リスト(1/6)

				1
系統	設 備	設置建屋	設置高さ	機能喪失高さ
補助給水系統	3A,3B電動補助給水ポンプ	原子炉周辺建屋	EL.10.0m	EL.10.65m
補助給水系統	3タービン動補助給水ポンプ	原子炉周辺建屋	EL.3.5m	EL.4.1m
補助給水系統	3タービン動補助給水ポンプ起動弁A,B (3V MS -570A,B)	原子炉周辺建屋	EL.33.6m	EL.34.5m
補助給水系統	3タービン動補助給水ポンプ起動盤A,B (3TDF A,B)	原子炉周辺建屋	EL.10.0m	EL.10.2m
補助給水系統	3A,3B,3C,3D蒸気発生器補助給水流量 (3FT -3716,3726,3736,3746)	原子炉周辺建屋	EL.17.1m	EL.18.0m
補助給水系統	3復水ピット水位 , (3LT -3760,3761)	原子炉周辺建屋	EL.26.0m	EL.26.05m
補助給水系統	3A,3B,3C,3D補助給水隔離弁 (3V-FW-574A,B,C,D)	原子炉周辺建屋	EL.26.0m	EL.26.88m
補助給水系統	3復水ピット	原子炉周辺建屋	EL.26.0m	-
ほう酸注入系統	3A,3B充てんポンプ	原子炉周辺建屋	EL.10.0m	EL.10.74m
ほう酸注入系統	30充てんポンプ	原子炉周辺建屋	EL.10.0m	EL.10.28m
ほう酸注入系統	3C充てんポンプ速度制御盤 (3CSC)	原子炉周辺建屋	EL.10.0m	EL.10.97m
ほう酸注入系統	3C充てんポンプ速度制御補助盤 (3CSAC)	原子炉周辺建屋	EL.10.0m	EL.10.2m
ほう酸注入系統	3A,3B,3C1,3C2充てんポンプ現場操作箱 (3LB 5,6,7,8)	原子炉周辺建屋	EL.10.0m	EL.11.2m
ほう酸注入系統	3緊急ほう酸注入ライン補給弁 (3V €S -573)	原子炉周辺建屋	EL.17.1m	EL.21.3m
ほう酸注入系統	3充てんポンプ入口燃料取替用水ピット側補給弁A,B (3LCV-121D,E)	原子炉周辺建屋	EL.10.0m	EL.10.8m
ほう酸注入系統	3A,3Bほう酸ポンプ	原子炉周辺建屋	EL.10.0m	EL.10.62m
ほう酸注入系統	3A,3Bほう酸ポンプ現場操作箱 (3LB 9 ,10)	原子炉周辺建屋	EL.10.0m	EL.11.2m
ほう酸注入系統	3充てんライン止め弁 (3V €S -155)	原子炉周辺建屋	EL.10.0m	EL.10.8m
ほう酸注入系統	3体積制御タンク出口第1止め弁 (3LCV -121B)	原子炉周辺建屋	EL.17.1m	EL.17.7m
ほう酸注入系統	3体積制御タンク出口第2止め弁 (3LCV -121C)	原子炉周辺建屋	EL.17.1m	EL.17.7m
ほう酸注入系統	3充てんライン格納容器隔離弁 (3V €S -157)	原子炉周辺建屋	EL.17.1m	EL.21.6m
ほう酸注入系統	3封水冷却器	原子炉周辺建屋	EL.17.1m	-
ほう酸注入系統	3A,3B封水注入フィルタ	原子炉周辺建屋	EL.26.0m	-
ほう酸注入系統	3封水ストレーナ	原子炉周辺建屋	EL.17.1m	-
ほう酸注入系統	3体積制御タンク	原子炉周辺建屋	EL.17.1m	-
ほう酸注入系統	3A,3Bほう酸タンク水位 (3LT -206,208)	原子炉周辺建屋	EL.17.1m	EL.18.1m
ほう酸注入系統	3A,3Bほう酸タンク	原子炉周辺建屋	EL.10.0m	-
i		+		·

3号機防護対象設備リスト(2/6)

系統	設 備 設置		設置高さ	機能喪失高さ
ほう酸注入系統	3ほう酸フィルタ	原子炉周辺建屋	EL.10.0m	-
余熱除去系統	3A,3B余熱除去ポンプ	原子炉周辺建屋	EL.3.5m	EL.4.35m
余熱除去系統	3A,3B余熱除去ポンプ現場操作箱 (3LB -14,15)	原子炉周辺建屋	EL.3.5m	EL.4.7m
余熱除去系統	3A,3B余熱除去ポンプ出口流量 (3FT 601,611)	原子炉周辺建屋	EL.3.5m	EL.4.6m
余熱除去系統	3A,3B余熱除去ポンプミニマムフローライン止め弁 (3FCV-601,611)	原子炉周辺建屋	EL.17.1m	EL.17.8m
余熱除去系統	3A,3B余熱除去冷却器	原子炉周辺建屋	EL.10.0m	-
制御空気系統	3A,3B制御用空気圧縮機制御盤 (3IAC A,B)	原子炉周辺建屋	EL.17.1m	EL.17.6m
制御空気系統	3A,3B制御用空気圧縮器	原子炉周辺建屋	EL.17.1m	EL.17.7m
制御空気系統	3A,3B制御用空気供給母管圧力 (3PT -1800,1810)	原子炉周辺建屋	EL.17.1m	EL.18.0m
制御空気系統	3A·C,3B·C制御用空気母管連絡弁 (3V-IA-501A,B)	3A·C,3B·C制御用空気母管連絡弁 原子加思河建居		
制御空気系統	3A,3B制御用空気乾燥器 (3IAH1A,B) 原子炉周辺建屋		EL.17.1m	-
制御空気系統	3A,3B制御用空気だめ (3IAT1A,B) 原子炉周辺建屋		EL.17.1m	-
制御空気系統	3A,3B制御用空気主蒸気逃がし弁等供給ライン止め弁 (3V-IA-505A,B)	3A,3B制御用空気主蒸気逃がし弁等供給ライン止め弁 原子(内国) 77.70 原子		EL.17.6m
原子炉補機冷却水系統	3A,3B余熱除去冷却器冷却水止め弁 (3V €C-114A,B)	原子炉周辺建屋	EL.10.0m	EL.10.6m
原子炉補機冷却水系統	3原子炉補機冷却水サージタンク	原子炉周辺建屋	EL.39.0m	-
原子炉補機冷却水系統	3A,3B原子炉補機冷却水冷却器	制御建屋	EL.7.0m	-
原子炉補機冷却水系統	3A,3B,3C,3D原子炉補機冷却水ポンプ	制御建屋	EL.7.0m	EL.9.47m
原子炉補機冷却水系統	3A,3B,3C,3D原子炉補機冷却水ポンプ現場操作箱 (3LB -20,21,22,23)	制御建屋	EL.7.0m	EL.9.9m
原子炉補機冷却水系統	3A・C,3B・C原子炉補機冷却水戻り母管連絡弁 (3V €C -043A,B)	制御建屋	EL.7.0m	EL.7.7m
原子炉補機冷却水系統	3A·C,3B·C原子炉補機冷却水供給母管連絡弁 (3V-CC-056A,B)	制御建屋	EL.7.0m	EL.7.7m
原子炉補機冷却水系統	34廃棄物処理建屋冷却水供給ライン第1,2止め弁(3号機側) (34V ℃ 600,601)	原子炉周辺建屋	EL.17.1m	EL.17.8m
原子炉補機冷却水系統	3原子炉補機冷却水サージタンク水位 , (3LT -1200,1201)	原子炉周辺建屋	EL.39.0m	EL.40.1m
原子炉補機冷却水系統	3A,3B格納容器スプレイ冷却器冷却水止め弁 (3V ℃ -178A,B)	原子炉周辺建屋	EL.10.0m	EL.10.7m
電気盤	3主盤 (原子炉盤) (3MCB)	制御建屋	EL.21.8m	EL.21.964m
電気盤	3原子炉補助盤 (3RAB)	制御建屋	EL.21.8m	EL.21.985m
電気盤	3原子炉安全保護計装盤 , , , (3RPR - , , ,)	制御建屋	EL.21.8m	EL.21.828m
電気盤	3A,3B,3C,3D原子炉安全保護ロジック盤 (3RPL A,B,C,D)	制御建屋	EL.21.8m	EL.21.958m
l .	!			!

3号機防護対象設備リスト(3/6)

		1		ı	
系統	設備設置建屋		設置高さ	機能喪失高さ	
電気盤	3安全保護シーケンス盤AG1,AG2,BG1,BG2 (3SFS A1,A2,B1,B2)	制御建屋	EL.21.8m	EL.22.0m	
電気盤	3A1,3A2,3A3,3A4,3B1,3B2,3B3,3B4ソレノイド分電盤 (3SD A1,A2,A3,A4,B1,B2,B3,B4)	制御建屋	EL.15.8m	EL.16.09m	
電気盤	3原子炉トリップ遮断器盤 (3RTS)	原子炉周辺建屋	EL.17.1m	EL.17.162m	
電気盤	3A,3Bドロッパ盤 (3BCP A DRP,3BCP B DRP)	制御建屋	EL.15.8m	EL.15.92m	
電気盤	3A,3B直流き電盤 (3DMP A,B)	制御建屋	EL.15.8m	EL.15.92m	
電気盤	3A,3B直流分電盤 (3DDP A,B)	制御建屋	EL.15.8m	EL.16.28m	
電気盤	3A,3B蓄電池	制御建屋	EL.15.8m	EL.16.602m	
電気盤	3A,3B充電器盤 (3BCP A,B)	制御建屋	EL.15.8m	EL.15.92m	
電気盤	3A1,3A2,3B1.3B2メタルクラッドスイッチギア (3MC A1,A2,B1,B2)	制御建屋	EL.15.8m	EL.15.95m	
電気盤	3A1,3A2,3B1,3B2パワーセンタ (3PC A1,A2,B1,B2)	制御建屋	EL.15.8m	EL.15.862m	
電気盤	3A1,3A2,3B1,3B2原子炉コントロールセンタ (3RCC A1,A2,B1,B2)	制御建屋	EL.15.8m	EL.16.01m	
電気盤	3A,3B,3C,3D計装用電源盤(1)~(3) (3IBC A,B,C,D)	制御建屋	EL.15.8m	EL.15.9m	
電気盤	3A1,3A2,3B1,3B2,3C1,3C2,3D1,3D2計装用分電盤 (3IPD A1,A2,B1,B2,C1,C2,D1,D2)	制御建屋	EL.15.8m	EL.16.09m	
電気盤	3A,3B,3C,3D計装用交流電源切替盤 (3ISP A,B,C,D)	制御建屋	EL.15.8m	EL.16.13m	
電気盤	3所内盤 (3HSB)	制御建屋	EL.21.8m	EL.21.9m	
電気盤	3AC,3BD計装用後備分電盤 (3IBD AC,BD)	制御建屋	EL.15.8m	EL.16.09m	
原子炉補機冷却海水系統	3A,3B原子炉補機冷却水冷却器海水止め弁 (3V SW 570A,B)	制御建屋	EL.7.0m	EL.9.7m	
原子炉補機冷却海水系統	3海水ポンプ出口3A,3B,3C,3D海水ストレーナ (3S SW 01A,B,C,D)	海水ポンプ ピット	EL.1.0m	-	
原子炉補機冷却海水系統	3A,3B,3C海水ポンプ	海水ポンプ ピット	EL.2.5m	EL.4.65m	
原子炉補機冷却海水系統	3A,3B1,3B2,3C海水ポンプ現場操作箱 (3LB -26,27,28,29)	海水ポンプ ピット	EL.2.5m	EL.6.5m	
非常用電源系統	3A,3Bディーゼル発電機コントロールセンタ (3GCC A,B)	原子炉周辺建屋	EL.10.0m	EL.10.24m	
非常用電源系統	3A,3Bディーゼル機関	原子炉周辺建屋	EL.10.0m	EL.3.9m	
非常用電源系統	3A,3Bディーゼル発電機	原子炉周辺建屋	EL.10.0m	EL.3.78m	
非常用電源系統	3A,3Bディーゼル発電機制御盤 (3DGC A,B)	原子炉周辺建屋	EL.10.0m	EL.10.095m	
CVスプレイ系統	3A,3B格納容器スプレイヘッダ冷却器出口格納容器隔離弁 (3V CP -024A,B)	原子炉周辺建屋	*	*	
CVスプレイ系統	3A,3B格納容器スプレイ冷却器	原子炉周辺建屋	*	*	
CVスプレイ系統	3よう素除去薬品タンク	原子炉周辺建屋	*	*	

3号機防護対象設備リスト(4/6)

系統	設 備	設置建屋	設置高さ	機能喪失高さ
CVスプレイ系統	3格納容器圧力(広域) , , , , (3PT 950,951.952,953)	原子炉周辺建屋	*	*
C Vスプレイ系統	3A,3B格納容器スプレイポンプ	原子炉周辺建屋	*	*
CVスプレイ系統	3A,3B格納容器スプレイポンプ現場操作箱 (3LB-18,19)	原子炉周辺建屋	*	*
CVスプレイ系統	3A,3B格納容器スプレイポンプ燃料取替用水ピット側入口止め弁 (3V CP-001A,B)	原子炉周辺建屋	*	*
C Vスプレイ系統	3A,3B格納容器スプレイポンプ再循環サンプ側入口格納容器隔離弁 (3V CP -003A,B)	原子炉周辺建屋	*	*
C Vスプレイ系統	3A,3Bよう素除去薬品注入ライン第1止め弁 (3V CP -054A,B)	原子炉周辺建屋	*	*
CVスプレイ系統	3A,3Bよう素除去薬品注入ライン第2止め弁 (3V CP -056A,B)	原子炉周辺建屋	*	*
高圧注入系統	3A,3B高圧注入ポンプ格納容器再循環サンプ側入口格納容器隔離弁 (3V SI 093A,B)	原子炉周辺建屋	EL.10.0m	EL.10.8m
高圧注入系統	3A,3B余熱除去ポンプRWSピット及び再循環サンプ側入口弁 (3V SI -096A,B)	原子炉周辺建屋	EL.10.0m	EL.10.8m
高圧注入系統	3A,3B高圧注入ポンプ	原子炉周辺建屋	EL.3.5m	EL.3.85m
高圧注入系統	3A,3B高圧注入ポンプ現場操作箱 (3LB -12,13)	原子炉周辺建屋	EL.3.5m	EL.4.7m
高圧注入系統	3A,3B高圧注入ポンプ燃料取替用水ピット側入口弁 (3V &I-002A,B)	原子炉周辺建屋	EL.10.0m	EL.10.8m
高圧注入系統	3A,3B低圧注入ポンプミニマムフローライン第1止め弁 (3V SI -015A,B)	原子炉周辺建屋	EL.6.6m	EL.7.1m
高圧注入系統	3A,3B高圧注入ポンプミニマムフローライン第2止め弁 (3V SI 016A,B)	原子炉周辺建屋	EL.6.6m	EL.7.1m
高圧注入系統	3A高圧注入流量(),3B高圧注入流量() (3FT 9 62,963)	原子炉周辺建屋	EL.10.0m	EL.10.9m
高圧注入系統	3燃料取替用水ピット水位 , , , (3LT -1400,1401,1402,1403)	原子炉周辺建屋	EL.17.1m	EL.18.1m
高圧注入系統/使用済燃 料ピット給水系統	3燃料取替用水ピット	原子炉周辺建屋	EL.18.5m	-
使用済燃料ピット冷却系 統	3A,3B使用済燃料ピット冷却器	原子炉周辺建屋	EL.10.0m	-
使用済燃料ピット冷却系 統	3A,3B使用済燃料ピット	原子炉周辺建屋	EL.33.6m	-
使用済燃料ピット冷却系 統	3A,3B使用済燃料ピットポンプ	原子炉周辺建屋	EL.10.0m	EL.10.76m
使用済燃料ピット冷却系 統	3A,3B使用済燃料ピットポンプ現場操作箱 (3LB -24,25)	原子炉周辺建屋	EL.10.0m	EL.11.2m
使用済燃料ピット給水系 統	3A,3B燃料取替用水ポンプ	原子炉周辺建屋	EL.17.1m	EL.17.64m
使用済燃料ピット給水系 統	3A,3B燃料取替用水ポンプ現場操作箱 (3LB 33,34)	原子炉周辺建屋	EL.17.1m	EL.18.3m
主蒸気系統 (主蒸気逃がし弁等)	3A,3B,3C,3D主蒸気逃がし弁 (3PCV -3610,3620,3630,3640)	原子炉周辺建屋	EL.26.0m	EL.36.9m
主蒸気系統 (主蒸気逃がし弁等)	, , , , ,3A,3B,3C,3D主蒸気圧力 (3PT 465,466,467,468,475,476,477,478,485,486,487,488 , 495,496,497,498)	原子炉周辺建屋	EL.29.0m	EL.30.0m
主蒸気系統 (主蒸気逃がし弁等)	3A,3B,3C,3D主蒸気隔離弁 (3V AIS -533A,B,C,D)	原子炉周辺建屋	EL.29.0M	EL.29.6m
主蒸気系統 (主蒸気逃がし弁等)	4A -1 ~ 5,4B -1 ~ 5,4C -1 ~ 5,4D -1 ~ 5主蒸気安全弁 (3V -MS -526 ~ 530A,B,C,D)	原子炉周辺建屋	EL.26.0m	EL.38.1m

3号機防護対象設備リスト(5/6)

		1		T
系統	設備	設置建屋	設置高さ	機能喪失高さ
空調系	3A,3B,3C,3D空調用冷凍機	制御建屋	EL.10.0m	EL.10.4m
空調系	3A,3B,3C,3D空調用冷水ポンプ	制御建屋	EL.10.0m	EL.10.58m
空調系	3A,3B中央制御室空調ユニット冷水温度制御弁 (3TCV 2878,2879)	制御建屋	EL.26.1m	EL.27.4m
空調系	34C,34D安全補機開閉器室空調ユニット冷水温度制御弁 (34TCV-2800,2801)	制御建屋	EL.26.1m	EL.27.0m
空調系	3空調用冷水Nヘッダ供給,戻りライン止め弁 (3V ℃H-032,033)	制御建屋	EL.10.0m	EL.10.8m
空調系	3A,3B中央制御室空調ファン	制御建屋	EL.26.1m	EL.27.35m
空調系	3A,3B中央制御室循環ファン	制御建屋	EL.26.1m	EL.26.4m
空調系	3A,3B中央制御室空調ファン出口ダンパ (3D √S 603A,B)	制御建屋	EL.26.1m	EL29.9m
空調系	3A,3B中央制御室循環ファン入口ダンパ (3D √S 604A,B)	制御建屋	EL.26.1m	EL.27.5m
空調系	3A,3B中央制御室循環流量調節ダンパ (3HCD -2885,2886) 制御建屋		EL.26.1m	EL.27.5m
空調系	3中央制御室温度(1),(2) (3TS -2908,2909)			EL.22.7m
空調系	3A,3B中央制御室空調ファン出口流量 (3FS 2910,2911)			EL.27.4m
空調系	3安全系電気盤室給気止めダンバA,B (3D √S -532,533)	制御建屋	EL.26.1m	EL.29.3m
空調系	3安全系電気盤室排気止めダンパA,B (3D √S -536,537)	制御建屋	EL.28.7m	EL.29.5m
空調系	3A,3B安全補機開閉器室温度 (3TS 2817,2818)	制御建屋	EL.15.8m	EL.17.2m
空調系	3A,3B制御用空気圧縮機室給気ファン	原子炉周辺建屋	EL.17.1m	EL.17.24m
空調系	3制御用空気圧縮機室温度(1),(2),(3),(4) (3TS -2771,2772,2773,2774)	原子炉周辺建屋	EL.17.1m	EL.18.5m
空調系	3制御用空気圧縮機室排気ダンパA,B (3D √S 431A,B)	原子炉周辺建屋	EL.17.1m	EL.22.2m
空調系	3A,3B電動補助給水ポンプ室給気ファン	原子炉周辺建屋	EL.17.1m	EL.17.26m
空調系	3A,3B電動補助給水ポンプ室温度(1),(2) (3TS -2741,2742,2743,2744)	原子炉周辺建屋	EL.10.0m	EL.11.4m
空調系	3電動補助給水ポンプ室排気ダンパA,B (3D √S 411A,B)	原子炉周辺建屋	EL.21.3m	EL.23.3m
空調系	3A1,3A2,3B1,3B2ディーゼル発電機室給気ファン	原子炉周辺建屋	EL.33.6m	EL.34.25m
空調系	3A,3Bディーゼル発電機室温度(1),(2),(3),(4) (3TS -2701,2702,2703,2704,2711,2712,2713,2714)	原子炉周辺建屋	EL.10.0m	EL.11.3m
空調系	3ディーゼル発電機室排気ダンパA1,A2,B1,B2 (3D √S 401A,B,403A,B)	原子炉周辺建屋	EL.10.0m	EL.14.0m
空調系	3A,3B安全補機室冷却ファン	原子炉周辺建屋	EL.17.1m	EL.17.94m
空調系	3A,3B安全補機室温度(1),(2) (3TS 2680,2681,2690,2691)	原子炉周辺建屋	EL.10.0m	EL.11.3m
空調系	3A,3Bほう酸ポンプ室空調ファン	原子炉周辺建屋	EL.10.0m	EL.10.46m
l .	!	1		!

3号機防護対象設備リスト(6/6)

設 備	設置建屋	設置高さ	機能喪失高さ
3A,3Bほう酸ポンプ室空調ファン給気加熱コイル	原子炉周辺建屋	EL.10.0m	EL.10.4m
3A,3Bほう酸ポンプ室温度調節計 (3TC 2601,2611)	原子炉周辺建屋	EL.10.0m	EL.10.7m
3ほう酸タンク室温度(1),(2),(3),(4) (3TS 2602,2603,2612,2613)	原子炉周辺建屋	EL.10.0m	EL.11.3m
3換気空調盤 (3VB)	制御建屋	EL.21.8m	EL.21.97m
3A1,3A2,3B1,3B2中央制御室外換気空調盤 (3VEP A1,A2,B1,B2)	原子炉周辺建屋	EL.26.0m	EL.26.375m
34A,34B安全補機開閉器室空調ファン	制御建屋	EL.26.1m	EL.27.88m
34C,34D安全補機開閉器室空調ファン	制御建屋	EL.26.1m	EL.27.88m
3A,3B中央制御室循環ダンパ流量設定 (3HC-2885,2886)		EL.26.1m	EL.27.5m
3A,3B安全補機室冷却ファン現場操作箱 (3LB 82,83)	原子炉周辺建屋	EL.17.1m	EL.18.3m
BA1・A2,3B1・B2ディーゼル発電機室給気ファン現場操作箱 (3LB 84,85)	原子炉周辺建屋	EL.33.6m	EL.34.8m
3A,3B電動補助給水ポンプ室給気ファン現場操作箱 (3LB 86,87)	原子炉周辺建屋	EL.17.1m	EL.18.3m
3A,3B制御用空気圧縮機室給気ファン現場操作箱 (3LB 9 0,91)	原子炉周辺建屋	EL.17.1m	EL.18.3m
BA,3B中央制御室循環ファン現場操作箱 (3LB 9 5,96)	制御建屋	EL.26.1m	EL.27.3m
3A,3B中央制御室空調ファン現場操作箱 (3LB -101,102) 制御建原		EL.26.1m	EL.27.3m
3A,3B,3C,3D空調用冷水ポンプ現場操作箱 (3LB-103,104,105,106) 制御建屋		EL.10.0m	EL.11.2m
34A,34B,34C,34D安全補機開閉器室空調ファン現場操作箱 (34LB-13,14,20,21)		EL.26.1m	EL.27.3m
3A,3Bほう酸ポンプ室空調ファン現場操作箱 (3LB -77,78)	原子炉周辺建屋	EL.10.0m	EL.11.2m
	8A,38ほう酸ポンプ室空調ファン給気加熱コイル 8A,38ほう酸ポンプ室温度調節計 (3TC 2601,2611) 8ほう酸タンク室温度(1),(2),(3),(4) (3TS 2602,2603,2612,2613) 8換気空調盤 (3VB) 8A1,3A2,381,382中央制御室外換気空調盤 (3VEP A1,A2,B1,B2) 84A,348安全補機開閉器室空調ファン 84C,340安全補機開閉器室空調ファン 84C,340安全補機関別器室空調ファン 84C,340安全補機室冷却ファン現場操作箱 (3L8 82,83) 8A1-A2,381・B2ディーゼル発電機室給気ファン現場操作箱 (3L8 84,85) 8A,38電動補助給水ポンプ室給気ファン現場操作箱 (3L8 86,87) 8A,38間押空気圧縮機室給気ファン現場操作箱 (3LB 90,91) 8A,38中央制御室循環ファン現場操作箱 (3LB 95,96) 8A,38中央制御室空調ファン現場操作箱 (3LB 101,102) 8A,38,3C,30空調用冷水ポンプ現場操作箱 (3LB 103,104,105,106) 84A,34B,34C,340安全補機開閉器室空調ファン現場操作箱 (3LB 13,14,20,21) 8A,38日う酸ポンプ室空調ファン現場操作箱	AA,38ほう酸ポンプ室空調ファン給気加熱コイル 原子炉周辺建屋 (3TC 2601,2611) 原子炉周辺建屋 (3TC 2601,2611) 原子炉周辺建屋 (3TC 2601,2611) 原子炉周辺建屋 (3TS 2602,2603,2612,2613) 原子炉周辺建屋 (3VB) 制御建屋 (3VE) A1,42,81,82) 原子炉周辺建屋 (3VE) A1,42,81,82) 原子炉周辺建屋 (3VE) A1,42,81,82) 原子炉周辺建屋 (3VE) A1,382 年機機開閉器室空調ファン 制御建屋 (3VE) A1,384 安全補機開閉器室空調ファン 制御建屋 (3VE) A1,385 (3VE) 月 (3VE) A1,42,81,82) 原子炉周辺建屋 (3VE) A1,38 安全補機室冷却ファン現場操作箱 (3LB 82,83) 原子炉周辺建屋 (3VE) A3,38 電動補助給水ボンブ室給気ファン現場操作箱 (3LB 84,85) 原子炉周辺建屋 (3LB 86,87) 原子炉周辺建屋 (3LB 96,91) 原子炉周辺建屋 (3LB 401,102) 原子炉周辺建屋 (3LB 401,102) 原子炉周辺建屋 (3LB 401,102) 原子炉周辺建屋 (3LB 403,104,105,106) 制御建屋 (3LB 103,104,105,106) 制御建屋 (3LB 103,104,105,106) 制御建屋 (3LB 103,104,105,106)	3A、38ほう酸ポンプ室空調ファン給気加熱コイル 原子炉周辺建屋 EL.10.0m

注)「*」の設備は原子炉冷却材喪失(LOCA)時に必要な設備であるが、以下の理由から検討対象外とした。

[・]格納容器内に設置される設備は、LOCA時の格納容器内の状態(温度・圧力及び溢水影響)を考慮した耐環境仕様としている。

[・]格納容器外に設置される設備は、LOCA時の影響を受けない。

4号機防護対象設備リスト(1/6)

				_
系統	設備	設置建屋	設置高さ	機能喪失高さ
補助給水系統	4復水ピット	原子炉周辺建屋	EL.26.0m	-
補助給水系統	4A,4B電動補助給水ポンプ	原子炉周辺建屋	EL.10.0m	EL.10.65m
補助給水系統	4タービン動補助給水ポンプ	原子炉周辺建屋	EL.3.5m	EL.4.1m
補助給水系統	4タービン動補助給水ポンプ起動弁A,B (4V MS 570A,B)	原子炉周辺建屋	EL.33.6m	EL.34.5m
補助給水系統	4タービン動補助給水ポンプ起動盤A,B (4TDF A,B)	原子炉周辺建屋	EL.10.0m	EL.10.2m
補助給水系統	4A,4B,4C,4D蒸気発生器補助給水流量 (4FT-3716,3726,3736,3746)	原子炉周辺建屋	EL.17.1m	EL.18.1m
補助給水系統	4復水ピット水位 , (4LT 3760,3761)	原子炉周辺建屋	EL.26.0m	EL.26.06m
補助給水系統	4A,4B,4C,4D補助給水隔離弁 (4V FW 574A,B,C,D)	原子炉周辺建屋	EL.26.0m	EL.26.93m
ほう酸注入系統	4A,4B充てんポンプ	原子炉周辺建屋	EL.10.0m	EL.10.74m
ほう酸注入系統	4C充てんポンプ	原子炉周辺建屋	EL.10.0m	EL.10.28m
ほう酸注入系統	4C充てんポンプ速度制御盤 (4CSC)	原子炉周辺建屋	EL.10.0m	EL.11.0m
ほう酸注入系統	4C充てんポンプ速度制御補助盤 (4CSAC)	原子炉周辺建屋	EL.10.0m	EL.10.2m
ほう酸注入系統	4A,4B,4C1,4C2充てんポンプ現場操作箱 (4LB 5,6,7,8)	原子炉周辺建屋	EL.10.0m	EL.11.2m
ほう酸注入系統	4封水冷却器	原子炉周辺建屋	EL.17.1m	-
ほう酸注入系統	4A,4B封水注入フィルタ	原子炉周辺建屋	EL.26.0m	-
ほう酸注入系統	4封水ストレーナ	原子炉周辺建屋	EL.17.1m	-
ほう酸注入系統	4体積制御タンク	原子炉周辺建屋	EL.17.1m	-
ほう酸注入系統	4緊急ほう酸注入ライン補給弁 (4V €S 573)	原子炉周辺建屋	EL.17.1m	EL.21.3m
ほう酸注入系統	4充てんポンプ入口燃料取替用水ピット側補給弁A,B (4LCV-121D,E)	原子炉周辺建屋	EL.10.0m	EL.10.8m
ほう酸注入系統	4A,4Bほう酸ポンプ	原子炉周辺建屋	EL.10.0m	EL.10.62m
ほう酸注入系統	4A,4Bほう酸ポンプ現場操作箱 (4LB 9,10)	原子炉周辺建屋	EL.10.0m	EL.11.2m
ほう酸注入系統	4A,4Bほう酸タンク水位 (4LT-206,208)	原子炉周辺建屋	EL.17.1m	EL.18.1m
ほう酸注入系統	4A,4Bほう酸タンク	原子炉周辺建屋	EL.10.0m	-
ほう酸注入系統	4ほう酸フィルタ	原子炉周辺建屋	EL.10.0m	-
ほう酸注入系統	4充てんライン止め弁 (4V €S -155)	原子炉周辺建屋	EL.10.0m	EL.10.8m
ほう酸注入系統	4体積制御タンク出口第1止め弁 (4LCV -121B)	原子炉周辺建屋	EL.17.1m	EL.17.7m
ほう酸注入系統	4体積制御タンク出口第2止め弁 (4LCV -121C)	原子炉周辺建屋	EL.17.1m	EL.17.7m

4号機防護対象設備リスト(2/6)

		1	ı	T	
系統	設備設置建屋		設置高さ	機能喪失高さ	
ほう酸注入系統	4充てんライン格納容器隔離弁 (4V CS -157)	原子炉周辺建屋	EL.17.1m	EL.21.6m	
余熱除去系統	4A,4B余熱除去ポンプ	原子炉周辺建屋	EL.3.5m	EL.4.35m	
余熱除去系統	4A,4B余熱除去冷却器	原子炉周辺建屋	EL.10.0m	-	
余熱除去系統	4A,4B余熱除去ポンプ現場操作箱 (4LB-14,15)	原子炉周辺建屋	EL.3.5m	EL.4.7m	
余熱除去系統	4A,4B余熱除去ポンプ出口流量 (4FT 601,611)	原子炉周辺建屋	EL.3.5m	EL.4.5m	
余熱除去系統	4A,4B余熱除去ポンプミニマムフローライン止め弁 (4FCV 601,611)	原子炉周辺建屋	EL.17.1m	EL.17.8m	
制御空気系統	4A,4B制御用空気圧縮機制御盤 (41AC 4,B)	原子炉周辺建屋	EL.17.1m	EL.17.6m	
制御空気系統	4A,4B制御用空気圧縮機	原子炉周辺建屋	EL.17.1m	EL.17.69m	
制御空気系統	4A,4B制御用空気乾燥器 (4IAH1A,B)	原子炉周辺建屋	EL.17.1m	-	
制御空気系統	4A,4B制御用空気だめ (4IAT1A,B)	ら 原子炉周辺建屋			
制御空気系統	4A,4B制御用空気供給母管圧力 (4PT-1800,1810)				
制御空気系統	4A·C,4B·C制御用空気母管連絡弁 (4V-lA-501A,B) 原子炉周辺建屋		EL.17.1m	EL.17.6m	
制御空気系統	4A,4B制御用空気主蒸気逃がし弁等供給ライン止め弁 (4V-IA-605A,B) 原子炉周辺建屋		EL.17.1m	EL.17.6m	
原子炉補機冷却水系統	4A,4B,4C,4D原子炉補機冷却水ポンプ	冷却水ポンプ制御建屋		EL.9.47m	
原子炉補機冷却水系統	4A,4B,4C,4D原子炉補機冷却水ポンプ現場操作箱 (4LB-20,21,22,23)	制御建屋	EL.7.0m	EL.9.9m	
原子炉補機冷却水系統	4原子炉補機冷却水サージタンク	原子炉周辺建屋	EL.42.0m	-	
原子炉補機冷却水系統	4A,4B原子炉補機冷却水冷却器	制御建屋	EL.7.0m	-	
原子炉補機冷却水系統	4A·C,4B·C原子炉補機冷却水戻り母管連絡弁 (4V-CC-043A,B)	制御建屋	EL.7.0m	EL.7.7m	
原子炉補機冷却水系統	4A·C,4B·C原子炉補機冷却水供給母管連絡弁 (4V-CC-056A,B)	制御建屋	EL.7.0m	EL.7.7m	
原子炉補機冷却水系統	34廃棄物処理建屋冷却水供給ライン第1,2止め弁(4号機側) (4V-CC-605,606)	原子炉周辺建屋	EL.17.1m	EL.17.7m	
原子炉補機冷却水系統	4A,4B余熱除去冷却器冷却水止め弁 (4V-CC-114A,B)	原子炉周辺建屋	EL.10.0m	EL.10.6m	
原子炉補機冷却水系統	4A,4B格納容器スプレイ冷却器冷却水止め弁 (4V-CC-178A,B)	原子炉周辺建屋	EL.10.0m	EL.10.7m	
原子炉補機冷却水系統	4原子炉補機冷却水サージタンク水位 , (4LT -1200, 1201)	原子炉周辺建屋	EL.39.0m	EL.40.0m	
電気盤	4主盤(原子炉盤) (4MCB)	制御建屋	EL.21.964m		
電気盤	4原子炉補助盤 (4RAB)	制御建屋	EL.21.8m	EL.21.985m	
電気盤	4原子炉安全保護計装盤 , , , (4RPR - , , ,)	制御建屋	EL.21.8m	EL.21.828m	
電気盤	4A,4B,4C,4D原子炉安全保護ロジック盤 (4RPL A,B,C,D)	制御建屋	EL.21.8m	EL.21.958m	

4号機防護対象設備リスト(3/6)

	T	1		
系統	設 備	設置建屋	設置高さ	機能喪失高さ
電気盤	4安全保護シーケンス盤AG1,AG2,BG1,BG2 (4SFS A1,A2,B1,B2)	制御建屋	EL.21.8m	EL.21.97m
電気盤	4A1,4A2,4A3,4A4,4B1,4B2,4B3,4B4ソレノイド分電盤 (4SD A1,A2,A3,A4,B1,B2,B3,B4)	制御建屋	EL.15.8m	EL.16.09m
電気盤	4原子炉トリップ遮断器盤 (4RTS)	原子炉周辺建屋	EL.17.1m	EL.17.162m
電気盤	4A,4Bドロッパ盤 (4BCP A DRP,4BCP B DRP)	制御建屋	EL.15.8m	EL.15.92m
電気盤	4A,4B直流き電盤 (4DMP A,B)	制御建屋	EL.15.8m	EL.15.92m
電気盤	4A,4B直流分電盤 (4DDP A,B)	制御建屋	EL.15.8m	EL.16.28m
電気盤	4A,4B蓄電池	制御建屋	EL.15.8m	EL.16.602m
電気盤	4A,4B充電器盤 (4BCP A,B)	制御建屋	EL.15.8m	EL.15.92m
電気盤	4A1,4A2,4B1.4B2メタルクラッドスイッチギア (4MC A1,A2,B1,B2)	制御建屋	EL.15.8m	EL.15.95m
電気盤	4A1,4A2,4B1,4B2パワーセンタ (4PC A1,A2,B1,B2)	制御建屋	EL.15.8m	EL.15.862m
電気盤	4A1,4A2,4B1,4B2原子炉コントロールセンタ (4RCC A1,A2,B1,B2)	制御建屋	EL.15.8m	EL.16.01m
電気盤	4A,4B,4C,4D計装用電源盤(1)~(3) (4IBC A,B,C,D)	制御建屋	EL.15.8m	EL.15.9m
電気盤	4A1,4A2,4B1,4B2,4C1,4C2,4D1,4D2計装用分電盤 (4IPD A1,A2,B1,B2,C1,C2,D1,D2)	制御建屋	EL.15.8m	EL.16.09m
電気盤	4A,4B,4C,4D計装用交流電源切替盤 (4ISP A,B,C,D)	制御建屋	EL.15.8m	EL.16.13m
電気盤	4所内盤 (4HSB)	制御建屋	EL.21.8m	EL.21.9m
電気盤	4AC,4BD計装用後備分電盤 (41BD AC,BD)	制御建屋	EL.15.8m	EL.16.09m
原子炉補機冷却海水系統	4A,4B原子炉補機冷却水冷却器海水止め弁 (4V-SW 570A,B)	制御建屋	EL.7.Om	EL.9.7m
原子炉補機冷却海水系統	4A,4B,4C海水ポンプ	海水ポンプ ピット	EL.2.5m	EL.4.65m
原子炉補機冷却海水系統	4A,4B1,4B2,4C海水ポンプ現場操作箱 (4LB-26,27,28,29)	海水ポンプ ピット	EL.2.5m	EL.6.4m
原子炉補機冷却海水系統	4海水ポンプ出口4A,4B,4C,4D海水ストレーナ (4S SW 01A,B,C,D)	海水ポンプ ピット	EL.1.Om	-
非常用電源系統	4A,4Bディーゼル発電機コントロールセンタ (4GCC A,B)	原子炉周辺建屋	EL.10.0m	EL.10.24m
非常用電源系統	4A,4Bディーゼル機関	原子炉周辺建屋	EL.10.0m	EL.3.9m
非常用電源系統	4A,4Bディーゼル発電機	原子炉周辺建屋	EL.10.0m	EL.3.78m
非常用電源系統	4A,4Bディーゼル発電機制御盤 (4DGC A,B)	原子炉周辺建屋	EL.10.0m	EL.10.095m
CVスプレイ系統	4格納容器圧力(広域) , , , (4PT-950,951,952,953)	原子炉周辺建屋	*	*
CVスプレイ系統	4A,4B格納容器スプレイポンプ	原子炉周辺建屋	*	*
CVスプレイ系統	4A,4B格納容器スプレイポンプ現場操作箱 (4LB-18,19)	原子炉周辺建屋	*	*

4号機防護対象設備リスト(4/6)

系統	設 備	設置建屋	設置高さ	機能喪失高さ
CVスプレイ系統	4A,4B格納容器スプレイ冷却器	原子炉周辺建屋	*	-
C V スプレイ系統	4よう素除去薬品タンク	原子炉周辺建屋	*	-
CVスプレイ系統	4A, 4B格納容器スプレイポンプ燃料取替用水ピット側入口止め弁 (V ℃P -001A, B)	原子炉周辺建屋	*	*
CVスプレイ系統	4A,4B格納容器スプレイポンプ再循環サンプ側入口格納容器隔離弁 (4V CP 003A,B)	原子炉周辺建屋	*	*
CVスプレイ系統	4A,4B格納容器スプレイヘッダ冷却器出口格納容器隔離弁 (4V-CP-024A,B)	原子炉周辺建屋	*	*
CVスプレイ系統	4A,4Bよう素除去薬品注入ライン第1止め弁 (4V CP -054A,B)	原子炉周辺建屋	*	*
CVスプレイ系統	4A,4Bよう素除去薬品注入ライン第2止め弁 (4V CP -056A,B)	原子炉周辺建屋	*	*
高圧注入系統	4A,4B高圧注入ポンプ	原子炉周辺建屋	EL.3.5m	EL.3.85m
高圧注入系統	4A,4B高圧注入ポンプ現場操作箱 (4LB-12,13)	原子炉周辺建屋	EL.3.5m	EL.4.7m
高圧注入系統	4A,4B高圧注入ポンプ燃料取替用水ピット側入口弁 (4V SI -002A,B)	原子炉周辺建屋	EL.10.0m	EL.10.8m
高圧注入系統	4A,4B低圧注入ポンプミニマムフローライン第1止め弁 (4V SI 015A,B)	原子炉周辺建屋	EL.6.6m	EL.7.1m
高圧注入系統	4A,4B高圧注入ポンプミニマムフローライン第2止め弁 (4V SI -016A,B)	原子炉周辺建屋	EL.6.6m	EL.7.1m
高圧注入系統	4A,4B高圧注入ポンプ格納容器再循環サンプ側入口格納容器隔離弁 (4V SI -093A,B)	原子炉周辺建屋	EL.10.0m	EL.10.8m
高圧注入系統	4A,4B余熱除去ポンプRWSピット及び再循環サンプ側入口弁 (弁4V-SI-096A,B)	原子炉周辺建屋	EL.10.0m	EL.10.8m
高圧注入系統	4燃料取替用水ピット水位 , , , (4LT -1400, 1401, 1402, 1403)	原子炉周辺建屋	EL.17.1m	EL.18.1m
高圧注入系統	4A高圧注入流量(),4B高圧注入流量() (4FT 9 62,963)	原子炉周辺建屋	EL.10.0m	EL.10.9m
高圧注入系統/使用済燃 料ピット給水系統	4燃料取替用水ピット	原子炉周辺建屋	EL.18.5m	-
使用済燃料ピット冷却系統	4A,4B使用済燃料ピット冷却器	原子炉周辺建屋	EL.10.0m	-
使用済燃料ピット冷却系統	4A,4B使用済燃料ピットポンプ	原子炉周辺建屋	EL.10.0m	EL.10.79m
使用済燃料ピット冷却系 統	4A,4B使用済燃料ピットポンプ現場操作箱 (4LB-24,25)	原子炉周辺建屋	EL.10.0m	EL.11.2m
使用済燃料ピット冷却系 統	4A,4B使用済燃料ピット	原子炉周辺建屋	EL.33.6m	-
使用済燃料ピット給水系 統	4A,4B燃料取替用水ポンプ	原子炉周辺建屋	EL.17.1m	EL.17.65m
使用済燃料ピット給水系統	4A,4B燃料取替用水ポンプ現場操作箱 (4LB 33,34)	原子炉周辺建屋	EL.17.1m	EL.18.3m
主蒸気系統 (主蒸気逃がし弁等)	4A,4B,4C,4D主蒸気逃がし弁 (4PCV 3610,3620,3630,3640)	原子炉周辺建屋	EL.26.0m	EL.36.9m
主蒸気系統 (主蒸気逃がし弁等)	, , , , ,4A,4B,4C,4D主蒸気圧力 (4PT-465,466,467,468,475,476,477,478,485,486,487,488, 495,496,497,498)	原子炉周辺建屋	EL.29.0m	EL.30.0m
主蒸気系統 (主蒸気逃がし弁等)	4A,4B,4C,4D主蒸気隔離弁 (4V AIS 533A,B,C,D)	原子炉周辺建屋	EL.29.0m	EL.29.6m
主蒸気系統 (主蒸気逃がし弁等)	4A -1 ~ 5,4B -1 ~ 5,4C -1 ~ 5,4D -1 ~ 5主蒸気安全弁 (4V -MS -526 ~ 530A,B,C,D)	原子炉周辺建屋	EL.26.0m	EL.38.0m

4号機防護対象設備リスト(5/6)

	1			T
系統	設 備		設置高さ	機能喪失高さ
空調系	4換気空調盤 (4VB)	制御建屋	EL.21.8m	EL.21.97m
空調系	4A1,4A2,4B1,4B2中央制御室外換気空調盤 (4VEP-A1,A2,B1,B2)	原子炉周辺建屋	EL.26.0m	EL.26.375m
空調系	4A,4B,4C,4D空調用冷凍機	制御建屋	EL.10.0m	EL.10.4m
空調系	4A,4B,4C,4D空調用冷水ポンプ	制御建屋	EL.10.0m	EL.10.56m
空調系	4A,4B中央制御室空調ユニット冷水温度制御弁 (4TCV-2878,2879)	制御建屋	EL.26.1m	EL.27.0m
空調系	34A,34B安全補機開閉器室空調ユニット冷水温度制御弁 (34TCV-2798,2799)	制御建屋	EL.26.1m	EL.27.0m
空調系	4空調用冷水Nヘッダ供給,戻りライン止め弁 (4V CH -032,033)	制御建屋	EL.10.0m	EL.10.8m
空調系	4A,4B中央制御室空調ファン	制御建屋	EL.26.1m	EL.27.3m
空調系	4A,4B中央制御室循環ファン	制御建屋	EL.26.1m	EL.26.2m
空調系	4A,4B中央制御室空調ファン出口ダンパ (4D √S 603A,B)	制御建屋	EL.26.1m	EL.30.0m
空調系	4A,4B中央制御室循環ファン入口ダンパ (4D √S 604A,B)	制御建屋	EL.26.1m	EL.27.6m
空調系	4A,4B中央制御室循環流量調節ダンパ (4HCD-2885,2886)			EL.27.4m
空調系	4中央制御室温度(1),(2) (4TS -2908,2909)	原子炉周辺建屋	EL.21.8m	EL.22.7m
空調系	4A,4B中央制御室空調ファン出口流量 (4FS 2910,2911)	制御建屋	EL.26.1m	EL.27.4m
空調系	4安全系電気盤室給気止めダンパA,B (4D √S -532,533)	制御建屋	EL.26.1m	EL.29.3m
空調系	4安全系電気盤室排気止めダンパA,B (4D √S 536,537)	制御建屋	EL.28.7m	EL.29.5m
空調系	4A,4B安全補機開閉器室温度 (4TS 2817,2818)	制御建屋	EL.15.8m	EL.17.1m
空調系	4A,4B制御用空気圧縮機室給気ファン	原子炉周辺建屋	EL.17.1m	EL.17.4m
空調系	4制御用空気圧縮機室排気ダンパA,B (4D √S 431A,B)	原子炉周辺建屋	EL.17.1m	EL.21.5m
空調系	4A,4B電動補助給水ポンプ室給気ファン	原子炉周辺建屋	EL.17.1m	EL.17.26m
空調系	4電動補助給水ポンプ室排気ダンパA,B (4D √S 411A,B)	原子炉周辺建屋	EL.21.3m	EL.23.7m
空調系	4A1,4A2,4B1,4B2ディーゼル発電機室給気ファン	原子炉周辺建屋	EL.33.6m	EL.33.9m
空調系	4ディーゼル発電機室排気ダンパA1,A2,B1.B2 (4D √S 401A,B,403A,B)	原子炉周辺建屋	EL.10.0m	EL.14.0m
空調系	4A,4B安全補機室冷却ファン	原子炉周辺建屋 EL.		EL.17.9m
空調系	4A,4Bほう酸ポンプ室空調ファン	原子炉周辺建屋 EL		EL.10.4m
空調系	4A,4Bほう酸ポンプ室空調ファン給気加熱コイル	原子炉周辺建屋	EL.10.0m	EL.10.4m
空調系	4A,4Bほう酸ポンプ室温度調節計 (4TC 2601,2611)	原子炉周辺建屋	EL.10.0m	EL.10.7m
-	•			

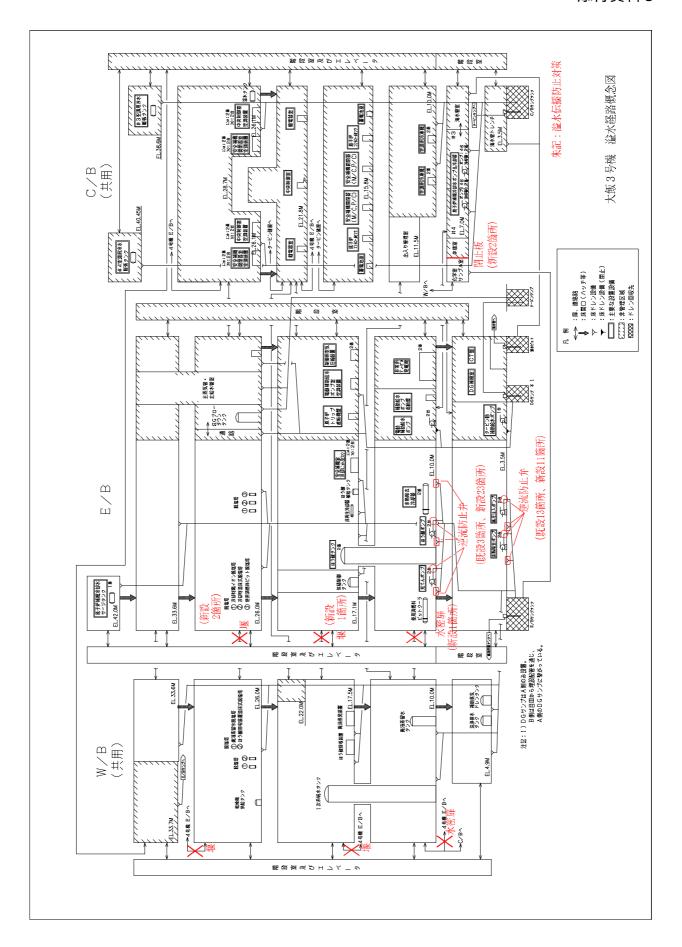
4号機防護対象設備リスト(6/6)

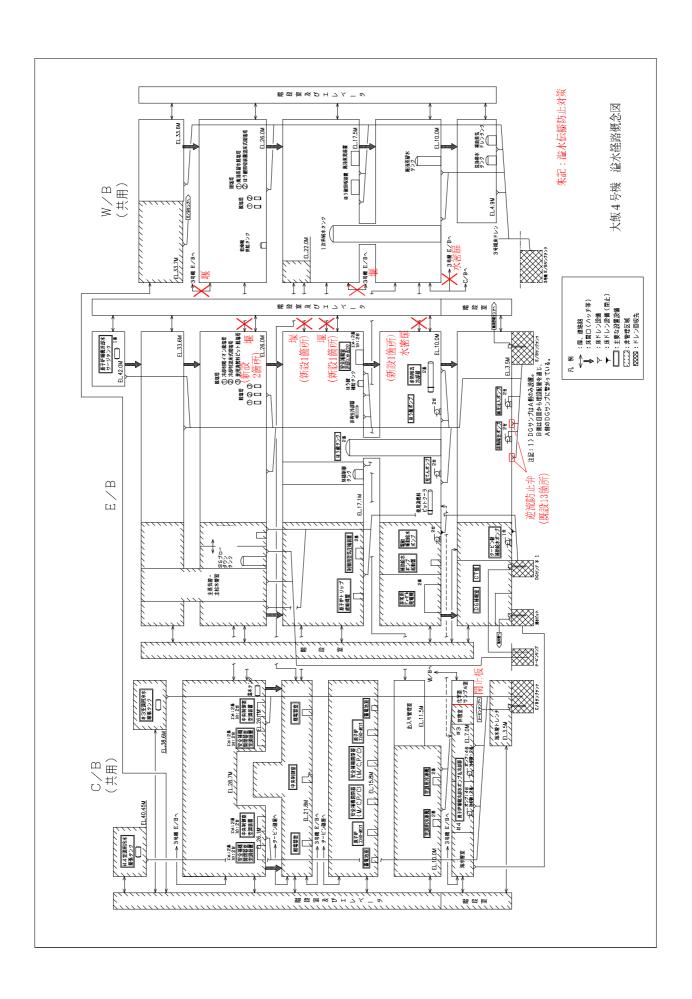
機能喪失高さ
EL.27.8m
EL.27.8m
EL.18.3m
EL.34.8m
EL.18.3m
EL.18.3m
EL.27.3m
EL.27.3m
EL.11.2m
EL.27.3m
EL.11.2m
EL.27.8m
EL.18.4m
EL.11.3m
EL.11.4m
EL.11.4m
EL.11.4m

注)「*」の設備は原子炉冷却材喪失(LOCA)時に必要な設備であるが、以下の理由から検討対象外とした。 ・格納容器内に設置される設備は、LOCA時の格納容器内の状態(温度・圧力及び溢水影響)を考慮した耐環境仕様としている。 ・格納容器外に設置される設備は、LOCA時の影響を受けない。

溢水源の抽出

原子炉周辺建屋、制御建屋、廃棄物処理建屋における溢水源となりうる機器は以下 のとおり


建屋	フロア	機器
	EL.42.0m	原子炉補機冷却水サージタンク 配管
	EL.39.0m	<u>樹脂タンク</u> 配管
	EL.33.6m	使用済燃料ピット 配管
	EL.26.0m	冷却材混床式脱塩塔 冷却材陽イオン脱塩塔 冷却材脱塩塔入口フィルタ 冷却材フィルタ 封水注入フィルタ 余剰抽出冷却器 使用済燃料ピット脱塩塔 使用済燃料ピットフィルタ ブローダウンタンク 格納容器冷却ユニット 復水ピット
3号機 原子炉	EL.18.5m	燃料取替用水ピット 配管
周辺建屋	EL.17.1m	封水冷却器体積制御タンク1次系薬品タンクほう酸補給タンク非再生冷却器試料冷却器ブローダウン試料冷却器安全補機室冷却ユニットよう素除去薬品タンク内調整剤タンク配管
	EL.10.0m	使用済燃料ピット冷却器 ほう酸タンク 格納容器スプレイ冷却器 余熱除去冷却器 配管
	EL.3.5m	清水冷却器 潤滑油冷却器 配管


建屋	フロア	機器
	EL.42.0m	原子炉補機冷却水サージタンク 配管
	EL.39.0m	<u>樹脂タンク</u> 配管
	EL.33.6m	使用済燃料ピット 配管
	EL.26.0m	冷却材混床式脱塩塔 冷却材陽イオン脱塩塔 冷却材脱塩塔入口フィルタ 冷却材フィルタ 封水注入フィルタ 余剰抽出冷却器
		使用済燃料ピット脱塩塔使用済燃料ピットフィルタブローダウンタンク格納容器冷却ユニット復水ピット配管
4号機 原子炉	EL.18.5m	燃料取替用水ピット配管
周辺建屋	EL.17.1m	封水冷却器体積制御タンク1次系薬品タンクほう酸補給タンク非再生冷却器試料冷却器ブローダウン試料冷却器安全補機室冷却ユニットよう素除去薬品タンクPH調整剤タンク配管
	EL.10.0m	使用済燃料ピット冷却器 ほう酸タンク 格納容器スプレイ冷却器 余熱除去冷却器 配管
	EL.3.5m	清水冷却器 潤滑油冷却器 配管

建屋	フロア	機器			
制御建屋	EL.38.6m	空調用冷水膨張タンク配管			
	EL.26.1m	安全補機開閉器室空調ユニット 中央制御室空調ユニット 放射線管理室冷却ユニット 出入管理室温水タンク 配管			
	EL.10.0m	空調用冷凍機 原子炉補機冷却水冷却器 配管			
廃棄物 処理建屋*	EL.26.0m	ほう酸回収装置混床式脱塩塔 ほう酸回収装置脱塩塔フィルタ 廃液蒸留水脱塩塔 廃液フィルタ 格納容器雰囲気ガス試料冷却器 ガス圧縮装置 除湿装置 配管			
	EL.17.5m	廃液蒸発装置中和剤注入装置が性ソーダ計量タンク 廃液蒸発装置中和剤注入装置 ほう酸回収装置 廃液蒸発装置 乾燥造粒装置 配管			
	EL.10.0m	冷却材貯蔵タンク 廃液貯蔵タンク 廃液蒸留水タンク 膜分離活性汚泥処理装置 使用済樹脂貯蔵タンク 1次系純水タンク 洗たく設備 雑固体焼却設備			
	EL.4.9m	洗浄排水タンク 強酸ドレンタンク 強酸ドレンタンク中和装置か性ソーダ計量タンク 補助蒸気ドレンタンク 補助蒸気復水モニタ冷却器 配管			

^{*}廃棄物処理建屋から原子炉周辺建屋への流入経路については、堰や水密扉、床 ドレンの逆流防止弁を設置していることから、溢水源として評価対象としない

添付資料 5

溢水影響評価において期待することができる設備

号機 設置場所		設置	対象		新設	箇 所 数
与版	改具场別	高さ	XJ 家		既 設	国門奴
		EL. 3.5m			既設	2
			逆流防止弁	機器ドレン逆止弁	新設	10
				ベント逆止弁	新 設	1
				目皿逆止弁	既設	11
			+	サンプタンク	既設	1
	原子炉		举 	機器ドレン逆止弁	既設	3
3 号機	周辺建屋	EL.	逆流	機器トレク選単弁	新設	9
	(管理区域)	10 m	防止弁	目皿逆止弁	新設	14
				水密扉	新 設	1
		EL.		_		
		17.1m		堰	新設	1
		EL.	堰		⊅Γ≛Ω	0
		26 m			新設	2
	原子炉	EL. 3.5m	逆 流	機器ドレン逆止弁	既設	2
			防止弁	目皿逆止弁	既 設	11
			サンプタンク		既設	1
		EL.	水密 扉		±п тс ÷п	4
		10 m		小名庫	新設	1
4 号機	周 辺 建 屋	EL.		堰	新 設	1
	(管理区域)	17.1m		收	村 記又	1
		EL.	相		立□≐几	4
	22	22m		堰	新 設	1
		EL.		堰	新 設	2
		26m		시포	初1 直又	2
3,4号機	制御建屋	EL.	閉止 板		新 設	2
ひ、サーラ 17茂	(管理区域)	7 m			ማ ነ በጆ	۷

想定破損等により生じる溢水影響評価

1. はじめに

本添付は、溢水の影響を評価するために、大飯3,4号機における想定破損による内部溢水について検討を行い、溢水による影響評価結果を取りまとめたものである。

2. 配管の破損想定について

2.1 大飯3,4号機における配管の破損想定の考え方

大飯 3 , 4 号機については、発電所の設計段階において、配管破断防護設計の考え方に基づき、高エネルギー配管については 0 . 8 Sa 以下、低エネルギー配管については 0 . 4 Sa 以下と発生応力が低くなるように配慮したルート及びサポート設計が行われている。さらに、破損を想定した場合に特にエネルギーの高い主蒸気、主給水、補助給水、蒸気発生器ブローダウンなどの主要な高エネルギー配管は、格納容器貫通部からタービン建屋に至る配管を主蒸気・主給水管室(以下、MS 室)等に配置し、万一の破断の影響が安全機能を有する設備に及ばないように、図 1 に示すような区画分離した配置設計としている。

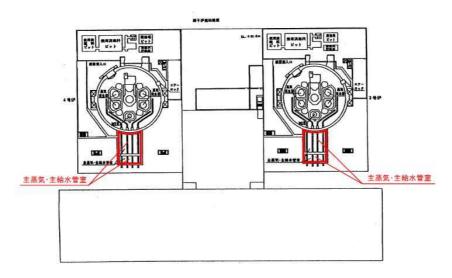


図1:主蒸気・主給水管室の区画区分のイメージ図

供用期間中は、機器・弁等の開放点検時の配管内部の目視点検や外観目視検査、日常点検(巡視点検等)などにより配管に有意な劣化がないことを確認するとともに、クラス 1~3 配管については供用期間中検査において非破壊試験・漏えい試験等により有意な欠陥がないことを確認している。また、過去の運転経験等に基づき経年劣化事象が想定される配管については、個別に点検・評価・予防保全を実施している。

さらに、配管破損の想定にあたっては、内部流体を含む配管に欠陥などが存在し、それが運転期間中に進展するようなことになったとしても、材料の靱性が高いか、または作用応力が低ければ破断することなしに適切な対応処置を講じることができるものと考えられる。

以上のように、大飯3,4号機における配管破損に対する防護設計や供用期間中の保全を踏まえると、破断の可能性は極めて低いものと考えられる。

2.2 配管破損を考慮する対象配管の選定

大飯3,4号機における溢水の影響を評価するために想定される 高エネルギー配管を抽出した結果、表1の系統配管となる。また、 対象配管の使用条件を別紙1に示す。

系統名	溢水評価における対象範囲	配置
化学体積制御系統	充てんポンプ出口/封水注入	E/B
化学体積制御系統	充てんポンプ出口 / 再生熱交換	E/B
10 J FT 15 16 16 53 180	器管側入口	2, 5
化学体積制御系統	抽出ライン/非再生冷却器出口	E/B
化学体積制御系統	抽出ライン / 非再生冷却器入口	E/B
主蒸気系統	主蒸気管	MS 室

表1:配管破損を考慮する対象配管

主蒸気系統	主蒸気逃がし弁	MS 室		
主蒸気系統	主蒸気隔離弁バイパス	MS 室		
主蒸気系統	主蒸気ドレン	MS 室		
主蒸気系統	タービン動補助給水ポンプ駆動	MS 室		
工然以尔凯	用蒸気	₩3 <u>年</u>		
主給水系統	主給水管	MS 室		
主給水系統	主給水バイパス	MS 室		
蒸気発生器ブロー	蒸気発生器ブローダウン	BD 室		
ダウン系統	(ペネ~アングル弁)	DD <u>年</u>		
補助給水系統	補助給水	MS 室		
補助蒸気系統	補助蒸気	C/B		

E/B:原子炉周辺建屋 MS室:主蒸気・主給水管室

BD 室: ブローダウン室 C/B: 制御建屋

なお、低エネルギー配管については、別紙 2 に示すとおり、溢水源として想定する対象がないことを確認しているため、以降、高エネルギー配管について検討を行った。

2.3 高エネルギー配管の応力評価結果

抽出した高エネルギー配管に対して応力評価を実施した。各系統配管の応力解析結果を表 2 に示す。全ての対象系統配管において、0.8Sa を下回っており、配管破損に対する健全性は確保されていることを確認した。

表2:高エネルギー配管の配管破損評価結果

配管名	一次 + 二次応力 (MPa)					上段:許容值 下段:参考值
	自重	内圧	熱膨張	1/3Sd	合計	上段: 0.8Sa 下段: 0.4Sa
充 て ん ポ ン プ 出 口 / 封 水注 入 ²	14.9	42.4	0	15.7	73.0	269 134
充 て ん ポ ン プ 出 口 / 再 生 熱 交 換 器 管 側 入 口 ²	14.9	42.4	0	15.7	73.0	269 134
抽出ライン/非再生冷却 器出口 ²	19.5	25.2	100.0	79.9	224.6	269 134
抽出ライン/非再生冷却 器入口 ²	23.7	25.2	100.0	58.2	207.1	256 128
主蒸気管					85.0	221 110
主蒸気逃がし弁 1					93.0	200 100
主蒸気隔離弁バイパス゜	10.1	27.2	0	63.3	100.6	200 100
主 蒸 気 ド レ ン ²	12.1	31.7	100.0	13.4	157.2	200 100
タービン 動 補 助 給 水 ポンプ駆動用蒸気 ¹					196.0	200 100
主給水管 1					58.0	259 129
主給水バイパス゜	12.6	34.3	0	19.4	66.3	259 129
蒸 気 発 生 器 ブ ロ ー ダ ウ ン (ペ ネ ~ ア ン グ ル 弁) ²	23.5	33.1	100.0	42.5	199.1	200 100
補助給水 2	13.1	24.0	100.0	21.3	158.4	200 100
補助蒸気 2	7.5	6.1	100.0	8.3	121.9	200 100

- 1:3次元はリモデルによる応力解析により算出。参考として主蒸気、主給水管の応力解析結果例を別紙3に示す。
- 2:定ピッチスパン法による設計をしており、自重は標準支持間隔の配管重量による発生応力を算出、熱膨張は設計上 100MPa 以下になるようサポート設計をしていることから、この制限値を発生応力としている。地震荷重は、標準支持間隔に対する 1/3Sd 地震動の発生応力を算出。これら算出応力に規格計算で求めた内圧による応力を加えて発生応力を算出。

2.4 配管破損に対する評価結果

対象となる各系統配管において応力評価を実施した結果、配管破損を想定する必要はなく、大飯3,4号機においては、配管の健全性は確保されていることから、溢水の影響は生じないことを確認した。

3. 溢水影響評価

大飯 3 , 4 号機については、配管破損に対する健全性は確保されているものの、万一、配管破損が発生した場合を想定し、より安全性を高めることを目的として溢水影響評価を実施した。 溢水影響評価は、配管破損が生じた場合の没水による影響、被水による影響、蒸気による影響について評価を行うこととなるが、それぞれ機器への影響の与え方が異なること及び大飯 3 , 4 号機のプラント設計を踏まえ、以下の通り各項目の影響評価を行う。

- (1) 没水による影響評価を行う場合は、想定破損による溢水経路 図を作成し、各フロアでの機能喪失高さの最も低い防護対象 設備を抽出して影響の有無を評価する。
- (2) 被水による影響評価を行う場合は、想定破損による溢水によりプラント停止に係る安全機能を有する機器が2系統同時に喪失しないことを確認するが、大飯3,4号機のプラント設計では分離配置していることから影響を受けにくいため、この特性を踏まえて、共通要因故障の観点から評価を実施する。
- (3) 蒸気による影響評価を行う場合については、万一の破断の影響が安全機能を有する設備に及ばないよう区画分離した MS 室等にある系統以外の運転温度が 95 以上となる高温配管から破損の影響を考慮することとし、具体的には、抽出ライン(非再生冷却器入口側)、補助蒸気系統配管について評価を実施する。

それぞれの影響評価項目で抽出された対象系統に対して、応力評

価結果に基づき破損想定を行なうこととなるが、配管の応力評価は合理的に設計されていることもあり、詳細な応力評価により、発生応力は低減されるものと考えられるが、今回の評価では、これまでの配管の応力評価結果を流用し、影響評価を行うものである。

3.1 没水による影響評価

抽出された対象系統について、一般部の貫通クラック想定に比べて溢水量が保守的となるターミナルエンドにおける破断を想定した。各系統配管における破損想定位置を表3に示す。

表3:没水評価における破損想定位置について

系 統 名	溢水評価における対象	没水評価における破	
>\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	範 囲	損 想 定 位 置	
化学体積制御系統	充てんポンプ出口 / 封	封水フィルタ室ターミナル	
10 子 14 19 11 11 11 11 11 11	水注入	Iンド(EL.26m)	
化学体積制御系統	充てんポンプ出口 / 再	充てんポンプ室ターミナル	
10 子 件 傾 即 脚 尔 凯	生熱交換器管側入口	ゴント゜(EL.10m)	
	抽出ライン/非再生冷	非再生冷却器室ターミナル	
化学体積制御系統	却器出口	エント゚(EL.17.1m)	
化学体積制御系統	抽出ライン/非再生冷	非再生冷却器室ターミナル	
10 子 冲 惧 则 岬 厼 紞	却器入口	Iンド(EL.17.1m)	
主蒸気系統	主蒸気管	なし	
主蒸気系統	主蒸気逃がし弁	なし	
主蒸気系統	主蒸気隔離弁バイパス	なし	
十 范 与 系 统	ナ 菉 年 ドリ. N.	MS 室ターミナルエント゛	
主 蒸 気 系 統	主蒸気ドレン	(EL.26.1m)	
主蒸気系統	タービン動補助給水ポ	MS 室ターミナルエント゛	
工	ンプ駆動用蒸気	(EL.26.1m)	
士纶水系统	士 於 水 答	MS 室ターミナルエント゜	
主給水系統	主 給 水 管	(EL.21.3m)	

主給水系統	主給水バイパス	なし
蒸気発生器ブロー	蒸気発生器ブローダウ	なし
ダウン系統	ン(ペネ~アングル弁)	4 U
補助給水系統	補助給水	なし
補助蒸気系統	補助蒸気	C/B ターミナルエント [*]
〒 以 糸 刈 糸 紅	開 助 糸 刈	(EL.26.0m)

表3で想定した破損に基づく溢水源からの溢水経路として、階段あるいは機器ハッチを経由して下層へ伝播する場合は、溢水経路上の各フロアの溢水量を積算し、滞留面積に基づき溢水水位を算出するとともに、防護対象設備の機能喪失高さと比較することにより、防護対象設備が機能喪失に至らないことを確認した。

別紙4に、本評価で用いた溢水経路、溢水水位及び防護設備の機能喪失高さを示すとともに、確認した結果例を表4に示す。

表4:3号機原子炉周辺建屋における評価結果例

建	EL.		溢水	機能喪失	
屋	(m)	防護対象設備	水 位	高さ	判定
圧	(111)		(m)	(m)	
原子炉	17.1	燃料取替用水ポンプ	0.044	0.54	
炉周辺建屋	10.0	充てんポンプ 速度制御補助盤	0.076	0.20	

溢水源は、化学体積制御系統(抽出ライン)

隔離時間は約70分で隔離すると溢水量は48.07m3となる。

3.2 被水による影響評価

被水による影響評価については、MS室、BD室に配置されている主給水系統及び蒸気発生器ブローダウン系統については、分離区画されていることから、他の区画への被水を考慮する必要はなく、また MS室内等に配置されている電気品・計装品等は耐環境仕様となっており、被水しても機能は喪失することはない。また、蒸気配管である主蒸気系統、補助蒸気系統は蒸気による影響評価と同様であることから、次項の3.3にて影響評価を行うものとする。

従って対象系統は化学体積制御系統となり、この系統配管についての影響評価はターミナルエンドでの破断想定により実施した。

破損想定位置を表5に示す

表5:被水評価における破損想定について

系統名	溢水評価における対象	被水評価における破
分 統 石 	範 囲	損 想 定 位 置
化学体積制御	充てんポンプ出口 / 封	封水フィルタ室ターミナル
系 統	水注入	Iンド(EL.26m)
化学体積制御	充てんポンプ出口 / 再	充てんポンプ室ターミナル
系 統	生熱交換器管側入口	エンド(EL.10m)
化学体積制御	抽出ライン/非再生冷	非再生冷却器室ターミナル
系 統	却器出口	Iンド(EL.17.1m)
化学体積制御	抽出ライン/非再生冷	非再生冷却器室ターミナル
系統	却器入口	Iンド(EL.17.1m)

被水の影響評価については、ターミナルエンドの破断を考慮した場合、 当該の系統機器は機能喪失となるが、別紙5の通り、この評価対象区画は分離設計となっており、被水による影響は当該区画内の みであり、この区画には他の安全防護設備は設置されておらず、 プラント停止に係る安全上重要な機器が2系統同時に喪失しな いことから、問題となるものではない。 また、共通要因故障の観点から、防護対象機器の区画配置及び防水仕様を調査し、被水影響に対する対策を実施していることから、一般部配管からの被水については問題とはならない。(別紙6参照)

3.3 蒸気の影響による評価

蒸気の影響による評価については、MS室、BD室に配置されている主蒸気系統、主給水系統及び蒸気発生器ブローダウン系統については、万一の破断の影響が安全設備に及ばないよう区画分離されていることから問題はない。また、化学体積制御系統のうち、充てんラインと抽出ライン(非再生冷却器出口側)については、配管の運転温度条件から蒸気が流出することはないことから、本評価は不要となる。従って、蒸気による破損の影響を考慮する系統配管として、抽出ライン(非再生冷却器入口側)、補助蒸気系統配管について、破断想定を行なった。破損想定位置を表6に示す。

表6:蒸気評価における破損想定について

系 統 名	溢水評価における	蒸気評価における破	
分 紅 石	対 象 範 囲	損 想 定 位 置	
化学体積制御	抽出ライン/非再	非再生冷却器室ターミナル	
系 統	生冷却器入口	Iンド(EL.17.1m)	
補助蒸気系統	補助蒸気	C/B ターミナルエント゜	
	開助	(EL.26.0m)	

蒸気の影響を考慮する場合、ターミナルエンドで破断することで、より多くの蒸気量が噴出することからターミナルエンドでの破断を想定した。抽出ライン(非再生冷却器入口側)については、配管破損に伴う蒸気の影響範囲は当該機器の設置フロアを越えることとなるが、別紙7の通り、蒸気の影響に伴う建屋区画内の環境解析を行った結果、破断区画は100 以上となるが系統隔離を中央制御室から15分以内に行うことにより、隣接区画が約50 程度

となることから、この操作が行われることにより、蒸気により区画内に設置された防護対象設備が機能喪失することはないこととなる。なお、当該の非再生冷却器室には防護対象設備がないことから問題とならない。

補助蒸気系統配管については、建屋内を広範囲にわたって敷設されており、影響は広範囲に及ぶため、蒸気の影響を限定するため、図2に示すとおり、通常時通気する範囲を廃棄物処理建屋のほう酸回収装置等に供給するラインに限定し、その他の系統は隔離して通気しない運用とする。この運用により、通気ラインはタービン建屋から制御建屋を経由して廃棄物処理建屋にいたるラインに限定される。

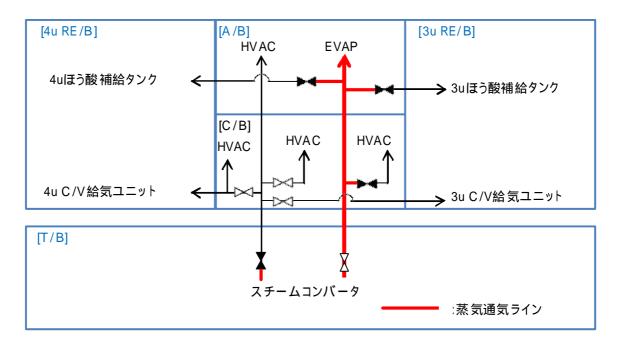


図2:補助蒸気ラインの限定運用

この条件に基づき配管破損に伴う蒸気の影響範囲を検討し、原子炉の安全停止にかかる最低限の設備を抽出した結果、該当する防護対象設備はなく、15分後には蒸気の供給を停止することから、原子炉施設の安全性を損なうことはない。

4.確認結果のまとめ

大飯3,4号機については、発電所の設計段階において配管破断防護設計の考え方に基づき配管、配置設計がなされており配管の健全性は確保されていることから、溢水の影響は生じないことを確認した。また、より安全性を高めることを目的として溢水影響評価を行った結果、配管破損により生じる内部溢水について現在運転中の大飯3,4号機については問題になるものではないことを確認した。しかしながら、更なる信頼性確保の観点から原子力発電所の安全

5. 今後の対応

5.1 至近定検までの対応について

更なる溢水影響の軽減を図り、より安全性を向上させるために、配管破損に伴う蒸気の影響評価において、短時間の隔離操作に期待する必要がある抽出ライン(非再生冷却器入口側)、補助蒸気配管により想定される溢水の影響については、至近の定検開始までの対応として、以下の対応を行う。

a . 抽出ライン(非再生冷却器入口側)

性向上のため、5.に記載する対策等を実施する。

- ・配管の破損を想定した場合に蒸気の漏えいを早期に検知し、 隔離操作が実施できるよう監視強化を実施する。また、隔離操 作のための運転操作手順も整備する
- b . 補助蒸気配管
- ・プラントの運転継続に必要な機器以外への補助蒸気供給を停止する。運転継続に必要な機器は、ほう酸回収装置、廃液蒸発装置等であり、全ての機器は廃棄物処理建屋内に設置されている。(原子炉周辺建屋内への補助蒸気供給停止)
- ・廃棄物処理建屋へは制御建屋経由で補助蒸気を供給しているため、この供給配管に破損が生じたとしても、漏えいを早期に検知し、隔離操作が実施できるよう監視強化対策を実施する。 また、隔離操作のための運転操作手順を整備する。

5.2 至近定検時の対応

更なる溢水影響の軽減を図り、より安全性を向上させるために、 至近定検時に以下の対応を行う。

- ・補助蒸気配管について隔離操作の迅速化の検討(隔離弁設置含む)
- ・防護対象区画の蒸気侵入を防止するシール対策の実施

別紙1:対象配管の系統条件

別紙2:低エネルギー配管の破損想定について

別紙3:主蒸気、主給水管の応力評価

別紙4:没水影響評価における溢水経路、溢水水位及び防護設備の機

能喪失高さ

別紙5:被水の影響を考慮すべき対象区画の配置

別紙6:被水による影響評価

別紙7:蒸気の影響に伴う対象建屋区画内の環境解析

添付資料7 - 別紙1

対象配管の系統条件

系統名	対象範囲	対象範囲における		
		使用条件		
 化学体積制御系統	 充てんポンプ出口 / 封水注入	運転圧力:約 17MPaG		
10子体俱利姆尔彻	元(ルボノノ山口)野水注入	運転温度:約 50		
ル労体装制御 乏妨	充てんポンプ出口 / 再生熱交	運転圧力:約 17MPaG		
化学体積制御系統 	換器管側入口	運転温度:約50		
化学体積制御系統	抽出ライン/非再生冷却器出	運転圧力:約2.2MPaG		
10子 件很可叫求规	П	運転温度:約 50		
 化学体積制御系統	抽出ライン/非再生冷却器入	運転圧力:約2.2MPaG		
10元 体心管的 阿沙尔州	П	運転温度:約 140		
主蒸気系統	 主蒸気管	運転圧力:約 6.03MPaG		
エボメバルが	工灬以日	運転温度:約 277		
主蒸気系統	 主蒸気逃がし弁	運転圧力:約 6.03MPaG		
工無以外別	工無気煙がも対	運転温度:約 277		
主蒸気系統	 主蒸気隔離弁バイパス	運転圧力:約6.03MPaG		
工無以水湯	上無気間離开バーバス	運転温度:約 277		
主蒸気系統	 主蒸気ドレン	運転圧力:約 6.03MPaG		
工無以外別	エ杰メロレン	運転温度:約277		
主蒸気系統	タービン動補助給水ポンプ駆	運転圧力:約6.03MPaG		
工無以水湯	動用蒸気	運転温度:約 277		
 主給水系統	 主給水管	運転圧力:約 6.03MPaG		
		運転温度:約 224		
主給水系統	 主給水バイパス	運転圧力:約6.03MPaG		
ᅩᅍᄭᅏᇞ	上記のハゴハス	運転温度:約 224		
蒸気発生器ブロー	蒸気発生器ブローダウン	運転圧力:約大気圧		
ダウン系統	(アングル弁~海水放出)	運転温度:約 100		
蒸気発生器ブロー	蒸気発生器ブローダウン	運転圧力:約6.03MPaG		
ダウン系統	(ペネ~アングル弁)	運転温度:約 277		
補助給水系統	 補助給水	運転圧力:約6.03MPaG		
市的流口小尔和	「田の八荒ログン	運転温度:約 224		
描	描	運転圧力:約0.7MPaG		
補助蒸気系統 	補助蒸気 	運転温度:約 170		
	-	· · · · · · · · · · · · · · · · · · ·		

低エネルギー配管の破損想定について

大飯 3 , 4 号機における低エネルギー配管について、評価ガイドの付録 A に基づき抽出した結果を下表に示す。

表 1 低エネルギー配管系統リスト

系 統 名	耐震Cクラス
原子炉補機冷却水系統	
格納容器スプレイ系統	
化学体積制御系統	
空調用冷水設備系統	
1 次系洗浄水系統	
1 次系放射性機器ドレン系統	
1 次系放射性床ドレン系統	
消火水系統	
1 次系補給水系統	
余熱除去系統	
燃料取替用水系統	
燃料ピット冷却浄化系統	
安全注入系統	
1 次系試料採取系統	
原子炉補機冷却海水系統	
液体廃棄物処理系統	
固体廃棄物処理系統	
補助給水系統	

1.設計上の考え方

低エネルギー配管は、定ピッチスパン法により、発生する一次 + 二次応力は十分小さくなるよう、設計配慮がなされている。一次 + 二次応力の要素となる「自重」「内圧」「地震」「熱」各々の特徴については以下のとおりである。

(1) 自重応力

自重応力については、設計時より 30MPa 以下となるよう制限しており、自重が占める応力は小さく(概ね 0.05Sa 程度)、また、系統配管によらず同程度と考えられる。

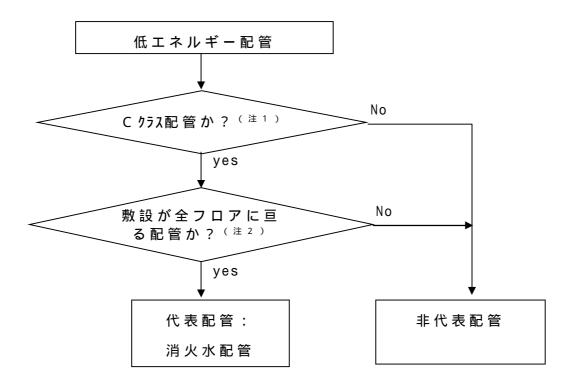
(2) 内圧応力

内圧応力については、最高使用圧力に対して余裕をもった必要板厚 t を満たすような設計要求があり、さらにこれに十分マージンをもたせて配管を選定するため、内圧が占める応力は小さく(概ね 0.1Sa 程度)、また、系統配管によらず同程度と考えられる。

(3) 地震応力

地震応力については、1/3Sd 地震時の応力であることから、 許容応力に対して十分小さい(概ね 0.1~0.2Sa 程度)と考 えられるが、系統配管毎固有のルート設計やサポート設計に よる影響を受けるため、他応力と比較すると、ばらつきが生 じている可能性がある。

(4) 熱応力


低エネルギー配管であることから、運転温度は低く、有意な熱応力は発生しない。

2.代表系統配管の配管破損評価

「1.設計上の考え方」で示した各応力の特徴から、「地震応力」に着目して代表配管系統を抽出し、抽出した配管に対する配管破損評価を実施する。

(1) 代表配管系の抽出

地震応力の大きさ及び網羅性の観点から、以下のフローにしたがい、代表配管系を抽出した。

注1: B クラス配管の設計用地震力は C クラス配管より大きいため、 定ピッチスパン法による最大支持スパンは、 B クラスの方が小 さくなる。したがって、同じレベルの地震力に対しては C クラ ス配管の地震応力は B クラス配管より大きくなることから、 C クラス配管を代表とする。

注 2 : 定ピッチスパン法による設計では、配管が同口径で建屋フロアが同じであれば、配管系統が異なることによる差異は生じない。 したがって、網羅性の観点から全フロアに亘っており、使用される配管口径の種類も多い配管系を代表とする。

図1:低エネルギー配管の評価代表抽出フロー

(2) 代表配管の配管破損評価結果

定ピッチスパン法による、代表配管(消火設備配管)の評価結果を下表に示す。代表配管の一次 + 二次応力は、0.1Sa 以下であり、0.4Sa と比較し十分小さいことから、低エネルギー配管については、溢水源として破損を想定する必要はないと判断できる。

代表配管	一 // (注 1) 内 圧	マ + 二次 (注 1) 自重	応力 (MF (注 1) 1/3Sd 地震	,	(注 2) 許容値 (MPa)	破損 想定 要否
┃ ┃ 消火設備配管	6.3	5.0	5.2	16.5	85	否

表2 代表配管の配管破損評価結果

- (注 1) 建設時標準支持間隔に基づく定ピッチスパン法による 計算結果である。
- (注 2) 許容値 (0.4Sa) の Sa は以下計算式にて算定している。 $S_a = 1.25 f S_c + (1.2 + 0.25 f) S_h$

主蒸気・主給水管の応力評価

1.主蒸気管の評価結果

主蒸気管は図1に示すように、各系統とも格納容器貫通部から一直線状に配置されていることから、発生応力は非常に低い結果となった。表1に示すとおり、ターミナルエント・も含めて最大となる発生応力は0.4Sa以下であり、0.8Saを十分下回っていることから破損を想定する必要がないことを確認した。

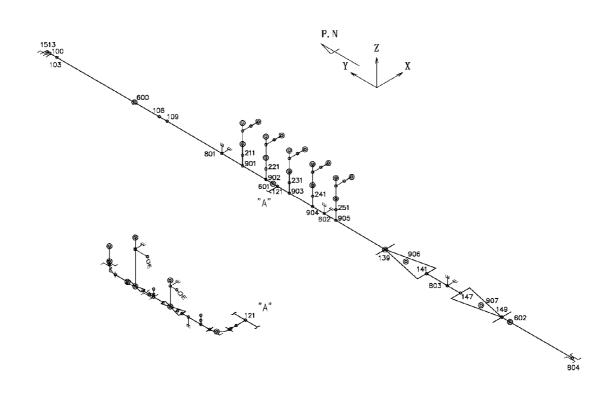


図 1 主蒸気管アイソメ図 主蒸気管 (CV 外) MS11

表 1: 応力評価結果による破損想定(主蒸気管) 主蒸気管(CV外)MS11

	工無以自(00)///////				
配管名称	節点番号	(1/3)Sd 地震	A,B および 荷重に対する 欠応力(MPa) 許容値	破損想定 要否	
	1513	49	221	否	
	100	49	221	否	
	103	85	221	否	
	600	5 5	221	否	
	108	54	221	否	
	109	57	221	否	
	801	81	221	否	
	901	72	221	否	
	902	65	221	否	
	601	62	221	否	
	121	71	221	否	
	903	5 5	221	否	
	904	49	221	否	
主蒸気管	802	5 5	221	否	
(CV 外)	905	5 5	221	否	
MS11	139	57	221	否	
	906	5 5	221	否	
	141	52	221	否	
	803	62	221	否	
	147	56	221	否	
	907	5 1	221	否	
	149	5 1	221	否	
	602	5 1	221	否	
	804	5 1	221	否	
	211	79	259	否	
	221	82	259	否	
	231	82	259	否	
	241	81	259	否	
	251	79	259	否	
-		·	·		

なお、許容値 (0.8Sa)の Sa は以下計算式にて算定している。 $S_a = 1.25 f S_c + (1.2 + 0.25 f) S_h$

- S_a: 日本機械学会「発電用原子力設備規格 設計・建設規格」(JSME S NC1 -2005/2007、以下「設計・建設規格」という。PPC -3530(1)d の計算式により計算した許容応力
- f:設計・建設規格 表 PPC -3530 -1 に記載されている温度変化サイクル数の区分に応じた許容応力低減係数
- S_c:設計・建設規格 付録材料図表 Part5 表に規定する室温 (注 1)における材料の許容引張応力
- S_h: 設計・建設規格 付録材料図表 Part 5 表 5 に規定する使用温度^(注 2)における材料の許容引張応力
 - (注 1) 室温は 21 とする。
 - (注 2) 使用温度は 302.4 とする。

2. 主給水管の評価結果

主給水管も図2に示すように、各系統とも格納容器貫通部から一直線状に配置されていることから、発生応力は非常に低い結果となった。表2に示すとおり、ターミナルエント・も含めて最大となる発生応力は0.4Sa以下であり、0.8Saを十分下回っていることから破損を想定する必要がないことを確認した。

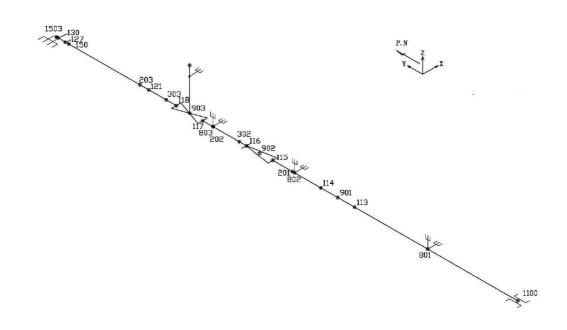


図 2 : 主給水管アイソメ図 主給水管(CV 外)FW11

表 2 : 応力評価結果による破損想定(主給水管) 主給水管(CV外)FW11

世界状態 A,B および (1/3)Sd 地震荷重に対する	工 加 小 目 (0 4 21) ! ! ! !				
±給水管 1100 41 259 杏 600 42 259 杏 601 43 259 杏 801 47 259 杏 602 41 259 杏 603 46 259 杏 113 49 259 杏 901 49 259 杏 114 44 259 杏 802 51 259 杏 201 50 259 杏 115 46 259 杏 902 46 259 杏 116 49 259 杏 902 46 259 杏 116 49 259 杏 803 57 259 杏 117 51 259 杏 117 51 259 杏 118 57 259 杏 121 51 259 杏 203 40 259 杏 <td>配管名称</td> <td>節点番号</td> <td>(1/3)Sd 地震 一次 + 二次</td> <td>荷重に対する 7応力(MPa)</td> <td></td>	配管名称	節点番号	(1/3)Sd 地震 一次 + 二次	荷重に対する 7応力(MPa)	
### State		1100			否
### State		600	42	259	否
金02 41 259 否 603 46 259 否 113 49 259 否 901 49 259 否 114 44 259 否 802 51 259 否 201 50 259 否 115 46 259 否 902 46 259 否 116 49 259 否 116 49 259 否 202 57 259 否 803 57 259 否 117 51 259 否 117 51 259 否 118 57 259 否 121 51 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否		601	43	259	否
並給水管 603 46 259 否 901 49 259 否 114 44 259 否 802 51 259 否 201 50 259 否 115 46 259 否 902 46 259 否 116 49 259 否 116 49 259 否 803 57 259 否 117 51 259 否 117 51 259 否 118 57 259 否 118 57 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		801	47	259	否
1113 49 259 否 901 49 259 否 114 44 259 否 802 51 259 否 201 50 259 否 115 46 259 否 902 46 259 否 116 49 259 否 302 57 259 否 803 57 259 否 117 51 259 否 118 57 259 否 118 57 259 否 118 57 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		602	41	259	否
114 44 259 否 否 日本 114 44 259 否 否 日本 115 46 259 否 否 日本 115 46 259 否 否 日本 116 49 259 否 否 日本 117 202 57 259 否 否 日本 117 51 259 否 日本 118 57 259 否 日本 118 57 259 否 日本 118 57 259 否 日本 121 51 259 否 日本 121 51 259 否 日本 121 51 259 否 日本 150 日本 150 日本 150 日本 150 日本 150 日本 150 百 百 日本 150 日本		603	46	259	否
主給水管 114 44 259 否 201 50 259 否 115 46 259 否 902 46 259 否 116 49 259 否 302 57 259 否 803 57 259 否 117 51 259 否 903 58 259 否 118 57 259 否 303 53 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		113	49	259	否
主給水管 (CV外) FW11 116 49 259 否 116 49 259 否 117 51 259 否 117 51 259 否 118 57 259 否 118 57 259 否 121 51 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		901	49	259	否
主給水管 (CV外) FW11 116 49 259 否 116 49 259 否 302 57 259 否 803 57 259 否 117 51 259 否 118 57 259 否 118 57 259 否 121 51 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		114	44	259	否
主給水管 (CV外) 116 49 259 否 116 49 259 否 302 57 259 否 803 57 259 否 117 51 259 否 903 58 259 否 118 57 259 否 118 57 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		802	5 1	259	否
主給水管 (CV外) FW11 902 46 259 否 116 49 259 否 302 57 259 否 803 57 259 否 117 51 259 否 903 58 259 否 118 57 259 否 303 53 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		201	50	259	否
主給水管 (CV外) FW11 116 49 259 否 302 57 259 否 803 57 259 否 117 51 259 否 903 58 259 否 118 57 259 否 303 53 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		115	46	259	否
日本部水管 (CV外) FW11 202 57 259 否 803 57 259 否 117 51 259 否 903 58 259 否 118 57 259 否 303 53 259 否 121 51 259 否 203 40 259 否 604 38 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否		902	46	259	否
(CV外) FW11 302 57 259 否 803 57 259 否 117 51 259 否 903 58 259 否 118 57 259 否 303 53 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否	主 給 水 管	116	49	259	否
803 57 259 否 117 51 259 否 903 58 259 否 118 57 259 否 303 53 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否	(CV 外)	302	57	259	否
117 51 259 否 903 58 259 否 118 57 259 否 303 53 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		202	57	259	否
903 58 259 否 118 57 259 否 303 53 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		803	57	259	否
118 57 259 否 303 53 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		117	51	259	否
303 53 259 否 121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		903	58	259	否
121 51 259 否 203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		118	57	259	否
203 40 259 否 604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		303	53	259	否
604 38 259 否 605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		121	51	259	否
605 41 259 否 150 51 259 否 127 52 259 否 130 37 259 否		203	40	259	否
150 51 259 否 127 52 259 否 130 37 259 否		604	38	259	否
127 52 259 否 130 37 259 否		605	41	259	否
130 37 259 否		150	51	259	否
		127	52	259	否
1503 37 259 否		130	37	259	否
		1503	37	259	否

なお、許容値(0.8Sa)の Sa は以下計算式にて算定している。 $S_a = 1.25 f \ S_c + \ (1.2 + 0.25 f) \ S_h$

- S_a:日本機械学会「発電用原子力設備規格 設計・建設規格」 (JSME S NC1 -2005/2007、以下「設計・建設規格」とい う。)PPC -3530(1)d の計算式により計算した許容応力
- F:設計・建設規格 表 PPC -3530 -1 に記載されている温度変化 サイクル数の区分に応じた許容応力低減係数
- S_c: 設計・建設規格 付録材料図表 Part5表 5 に規定する室温 (注 1) における材料の許容引張応力
- S_h:設計・建設規格 付録材料図表 Part5表 5 に規定する使用 温度 ^(注 2)における材料の許容引張応力
 - (注 1) 室温は 21 とする。
 - (注 2) 使用温度は 223.8 とする。

金船

加加

家籍群值

(1)化学体権制御系統(充てん/対水注入ライン) 破損想定位置

3.38時が注入フィルタ管台(原子が周辺護属 EL.36.0m) *3.88:36だんがプロードのでは、原子が周辺護属 EL.10.0m) **が大き** ・ 高路時間、近郊のからで開催(派皇氏検知・阿羅) ・ 淡水庫:50.4m)

 油水量 	• 油小車:50.4m										
湖	区域区分	E. [m]	滞留エリア 番号	磁水量 [m³]	神 一 「m ² 」	斌水水位 [m]	防觀対象設備	機能喪失高さ (EL.[m])	機能喪失高さ (床上[m])	影響評価	判定
		26.0	3EB -	50.4	435.7	0.116				防護対象設備 無し	
		17.1	3EB -	50.4	1109.8	0.046	34,38 燃料取替用水ポンプ	17.64	0.54	~	
		-	3EB -	50.4	1247.1	0.041	3A,3B 燃料取替用水ポンプ	17.64	0.54	~	
0			3EB - A,B	50.4	50.7	0.995	3A,3B 充てんポンプ	10.74	0.74		A,800点、片トレン室内での評価 温水水化と比へて 機能製失高さが低いが、複数トレンが同時に水没しないた め、問題ない。
35 原子炉 周辺建屋	管理区域	ç	3EB - C	50.4	31.4	1.606	30 充てんポンプ	10.28	0.28		Cトレン室内での評価 溢水が位と比べて、機能喪失高さが低いが、複数トレンが同時に水没しないた め、問題ない
		2.	3EB -	50.4	638.0	0.079	3C充てんポンプ速度制御補助盤 (3CSAC)	10.20	0.20	v	
			3EB -	50.4	799.2	0.064	3C充てんポンプ速度制御補助盤 (3CSAC)	10.20	0.20	>	
			3EB -	50.4	964.9	0.053	3C充てんポンプ速度制御補助盤 (3CSAC)	10.20	0.20	v	

(2) 大学体権制御系線(抽出ライン) ・ 接着制度で置きません 原子 中国 (原子や同辺建屋 EL.17.1m) ・ 計算生冷却器管台(原子や同辺建屋 EL.17.1m) ・ 活体量 (調整 18.0万元)・ 活体量: 48.0万元

家華評值 v ٧ 0.20 0.20 0.20 10.20 10.20 10.20 (30<u>5</u>84C) 30<u>たてんポンプ速度制御補助盤</u> (305<u>4</u>8年) 305年でんポンプ速度制御補助盤 (305AC) 防難対象設備 0.076 0.061 0.050 638.0 799.2 964.9 48.07 48.07 48.07 3EB -3EB -3EB -10.0 区基区分 管理区域 3号 原子炉 周辺建屋 麒

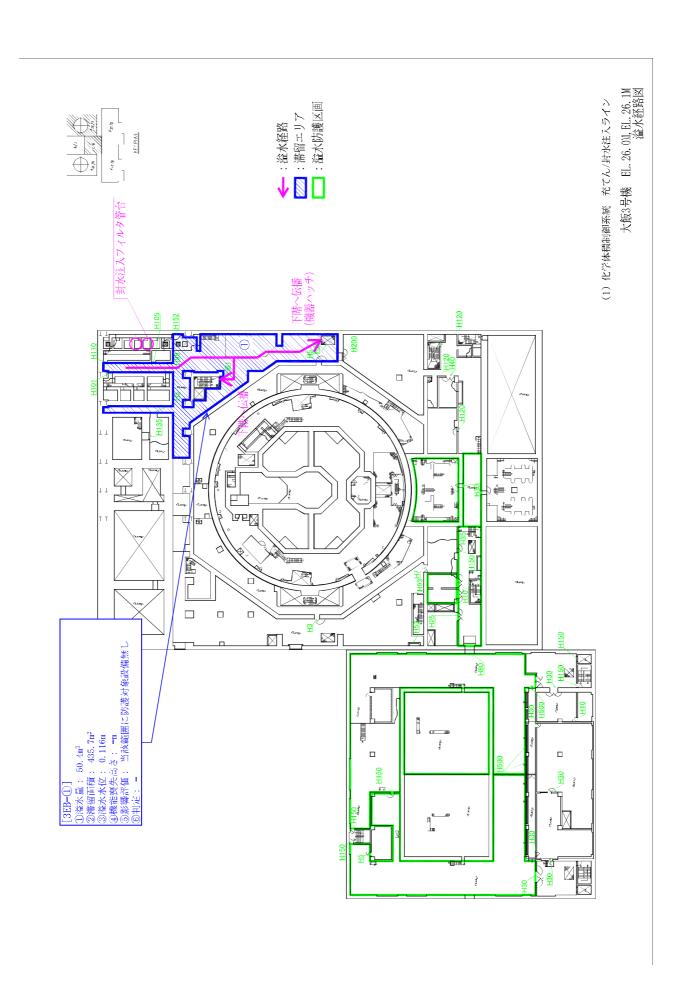
争

が

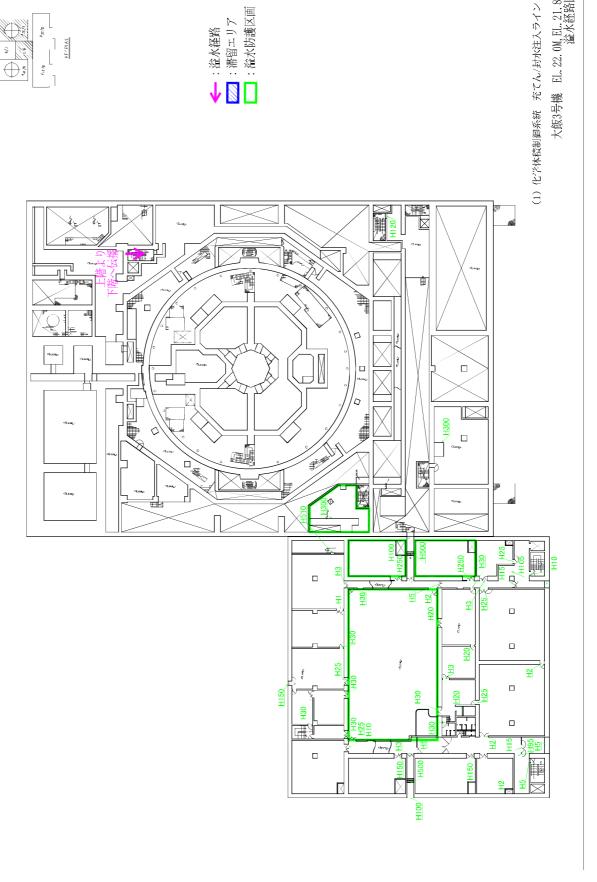
カーサポート点(制御建屋屋 EL.26.1m)

家権作 防護対象設備 無し 防護対象設備 無し 防護対象設備 無し 防護対象設備 機能喪失高さ (床上[m]) 機能喪失高さ (EL.[m]) 防體対象設備 0.123 0.445 0.064 22.5 81.4 157.2 溢水量 10.0 10.0 10.0 8-8 8 26.1 非管理区域 **藤属** 区域区分 調御御

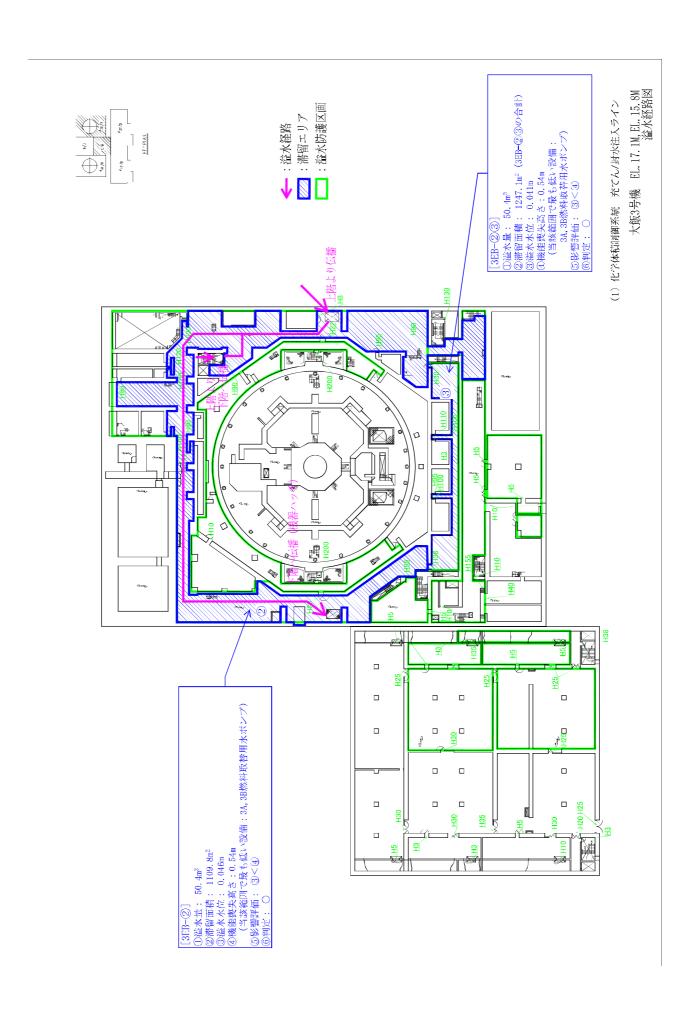
3A.3B中央制御室循環ファン

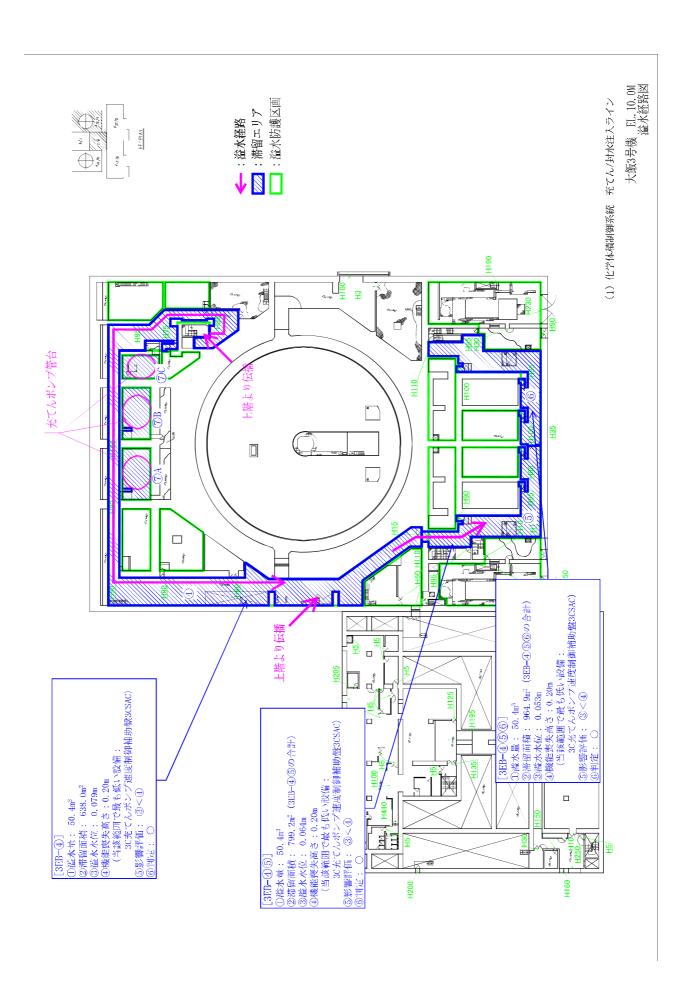

推

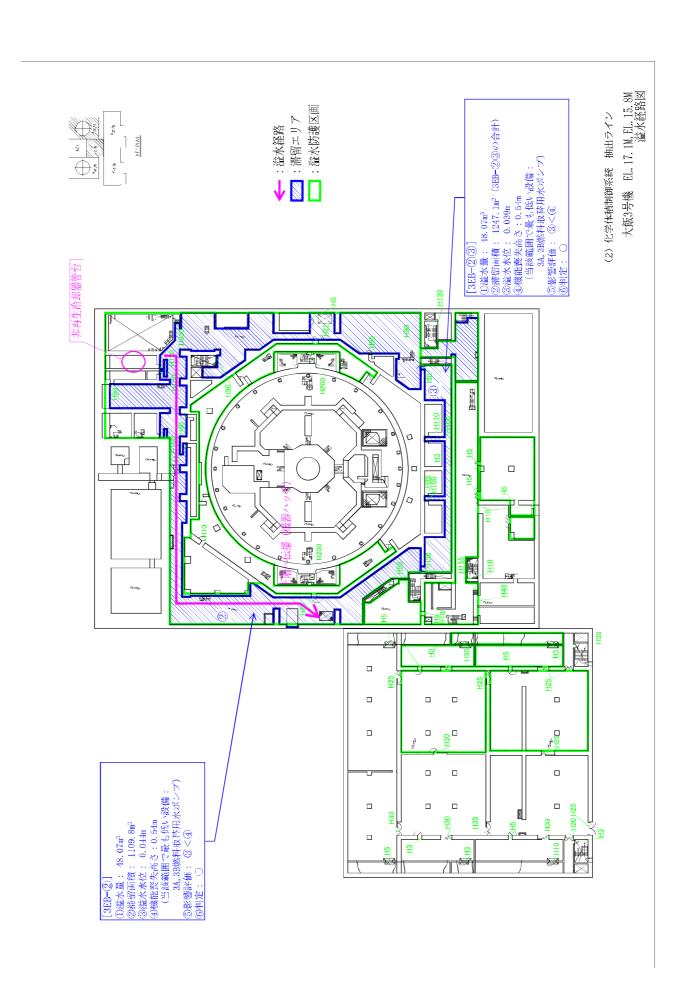
(4)**主兼気・主給水系統 破損規定位置** ・主給水配管

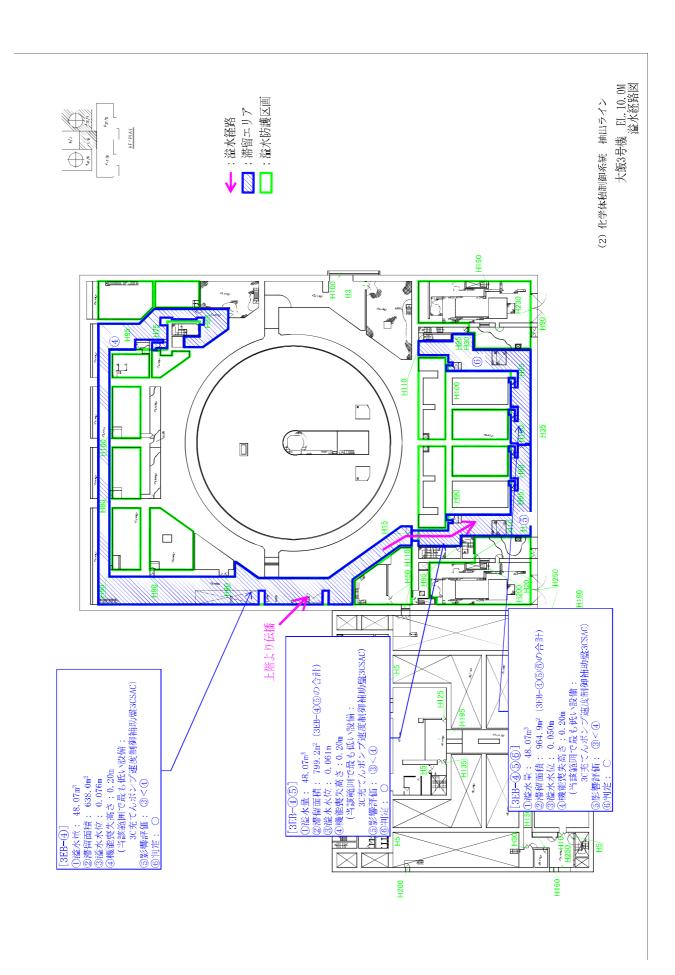

- 岩が水町音 **溢水量** - 隔離時間:約11分で隔離(主蒸気ライン差圧+補助給水隔離) ・溢水量:172㎡

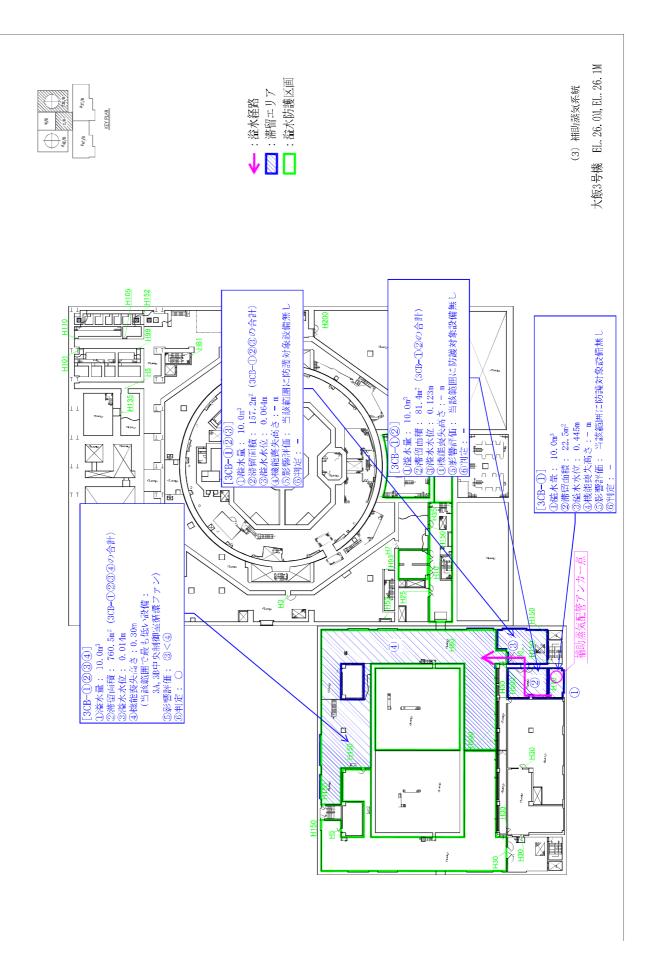
機能度失高さ 機能度失高さ (EL.[m]) (床上[m]) 0.88 26.88 防護対象設備 0.826 172.0 米配エリア 中中 MS/FW室 26.0 ᆿᆯ **鄭**図莊틣非 区域区分 運搬

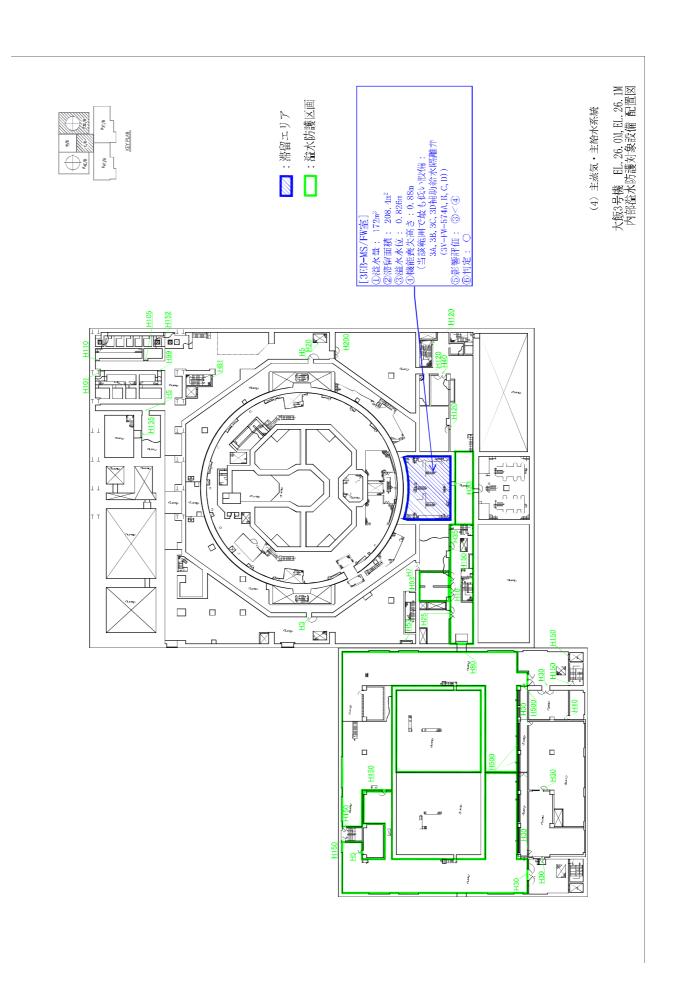

:溢水源設置エリア

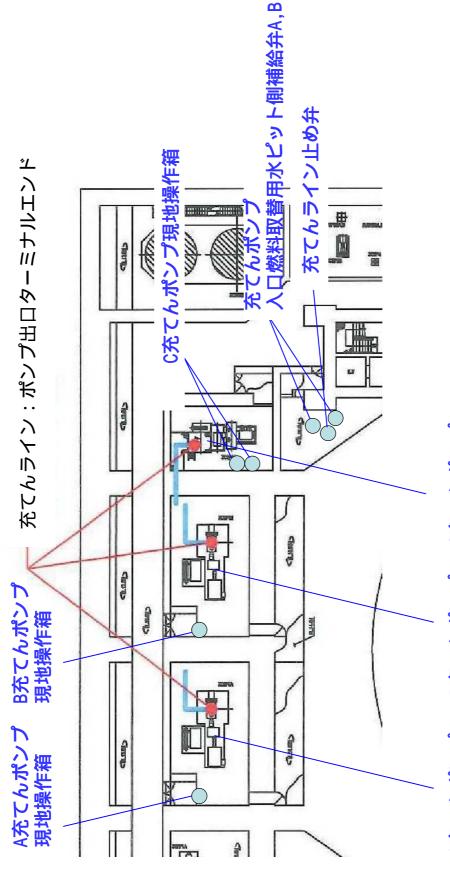


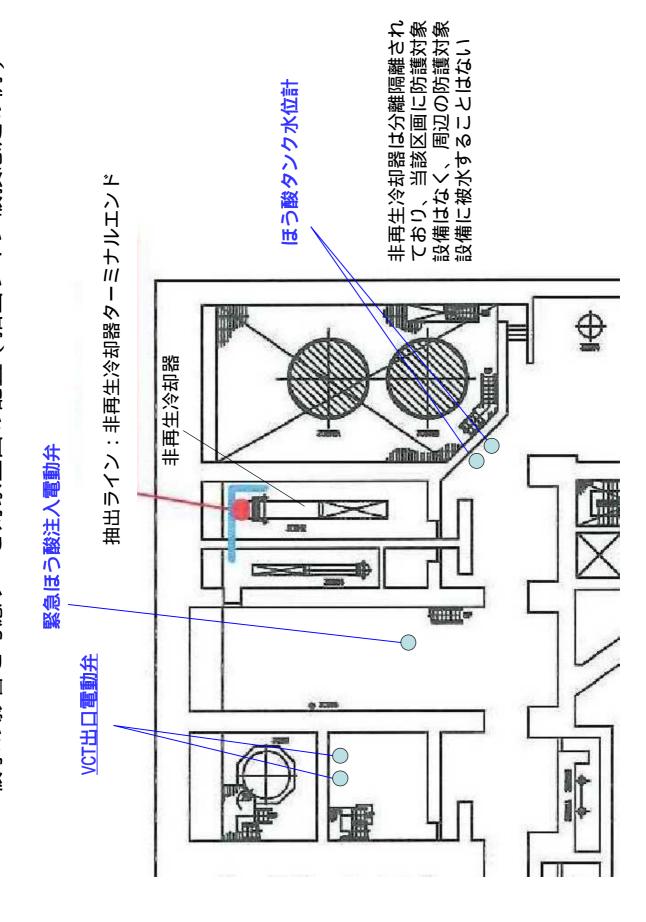




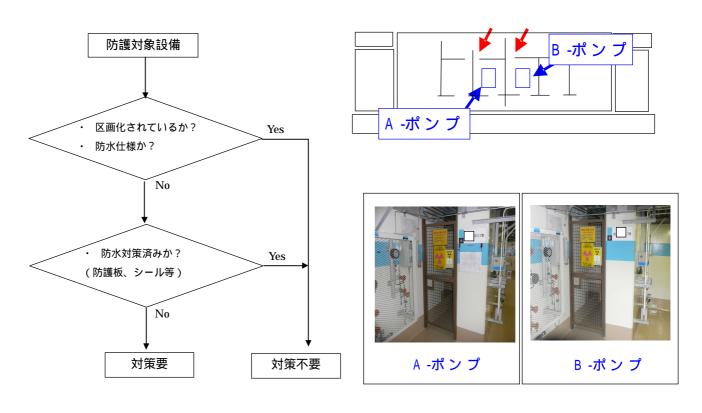

大飯3号機 ET. 22. 0M, EL. 21. 8M 溢水経路図






被水の影響を考慮すべき対象区画の配置(充てんライン破損想定の例)

A充てんポンプ B充てんポンプ C充てんポンプ


贸 当該区画の防護対象設備は機能喪失の可能性はあるが、 2系統の同時機能喪失とはならず問題ない 充てんポンプ室は分離隔離されており、 護対象設備に被水することはないため、

被水の影響を考慮すべき対象区画の配置(抽出ライン破損想定の例)

被水による影響評価

防護対象設備については、原則として区画分離等(原子炉周辺建屋最下層の配置例を示す)により被水による影響を受けないようにしているが、以下のフローにしたがって調査を実施し、必要な箇所については対策を実施した。

被水対策検討フロー図

原子炉周辺建屋配置例

以 上

蒸気の影響に伴う対象建屋区画内の環境解析

1. 評価対象範囲

高エネルギー配管のうち、MS 室等の区画内に配置されていない高温 配管として、補助蒸気配管および CVCS の抽出配管がある。

補助蒸気配管については周辺建屋への供給停止を実施していることから、対象配管については、CVCS(抽出ライン)とする。

2.影響評価

(1)破損想定位置

ターミナルエンドである非再生熱交換器入口管台での破断を想定する。

(2)破損時の蒸気影響

破損を想定する箇所である非再生冷却換器入口管台で破断が生じたとして、中央制御室の運転員が監視カメラおよび火災報知器により蒸気漏れを検知し、破断後の15分後に系統隔離による漏えいが停止するものとして、建屋区画内の環境解析を実施した結果、破損区画においては、温度102 程度となり、破損位置の周辺区画では温度50 程度との結果となった。解析モデル図を図1に、解析結果を図2に示す。



図 1 CVCS 環境解析モデル図

解析条件

区画: 非再生冷却器室 E/B EL. 17.1M (139m3)

破損箇所: 非再生冷却器入口管台

破損形態: ギロチン破断

停止: 15分(900秒)後に、系統隔離により放出停止

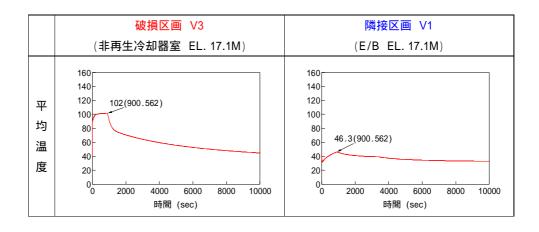
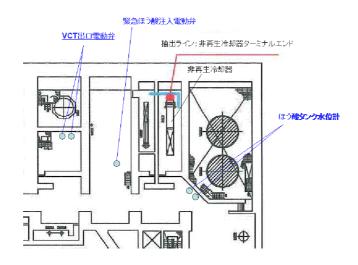



図 2. CVCS 環境解析結果

破断区画には防護対象機器はないが、蒸気の影響をうける可能性のある隣接区画において、原子炉の安全停止にかかる設備を抽出した結果、緊急ほう酸注入電動弁が存在する。これらの機器は破断区画には設置されておらず、温度上昇の影響も比較的軽微である。当該弁は、プラントの高温停止維持後の低温停止移行に使用するものであるが、環境解析の結果、原子炉施設の安全性を損なうことはない。

消火活動に係る時間設定の考え方

1.はじめに

消火活動における放水量については、防護対象設備が設置されている原子炉周辺建屋および制御建屋において、消火栓による消火活動を想定し、消火活動が連続して実施される時間を見込んで算定する。具体的には、原則として3時間の消火活動を想定して溢水量を算定しているが、火災源が小さいエリアについては、日本電気協会電気指針「原子力発電所の火災防護指針(JEAG4607-2010」解説 4-9の規定による「火災荷重」および「等価時間」で算定する。

2.評価方針

日本電気協会電気技術指針「原子力発電所の火災防護指針 (JEAG4607-2010)」解説 -4-5(1)の規定による、火災荷重に対応する等 価時間を放水時間として評価する。

[解説-4-5]「耐 火 壁」

(1) 評価法

火災に対する耐火壁能力の評価を行い、耐火壁の健全性を確認する。

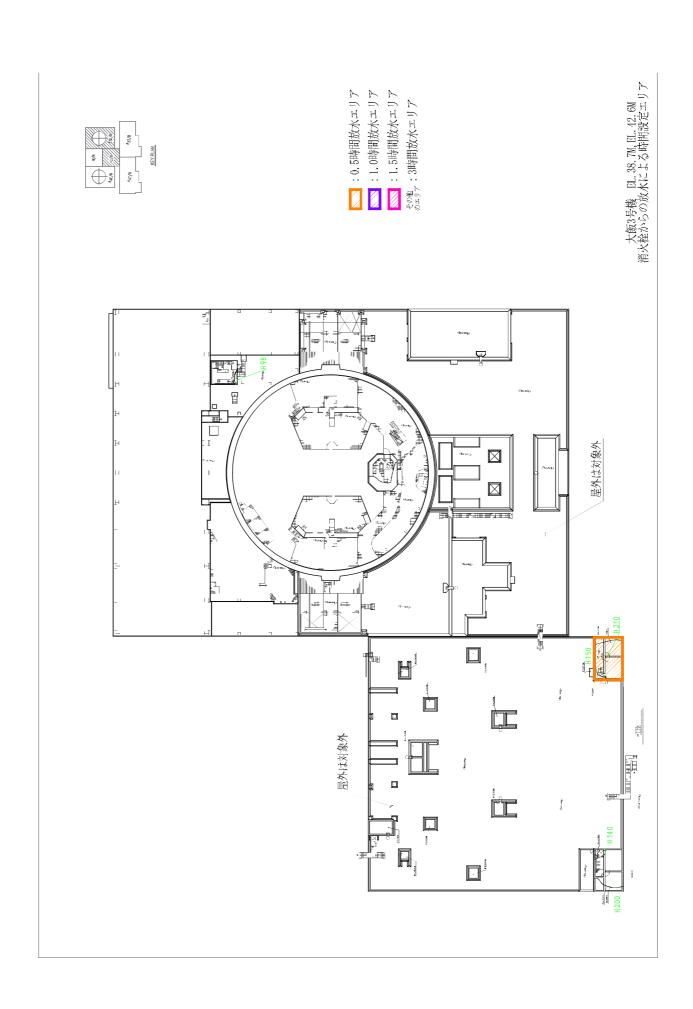
- a. 耐火壁にて囲まれた区域の可燃物の種類及び量から、全可燃物の燃焼時の発生熱量を求める。
- b. 次式により区域の火災荷重を求める。

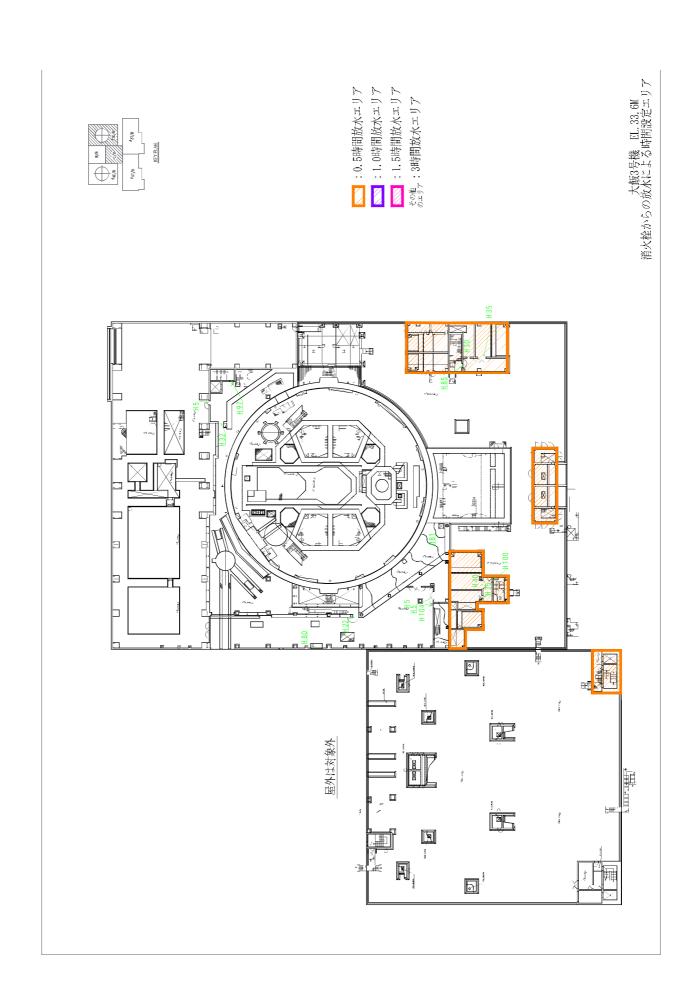
 $F_{load} = Q_p / A$

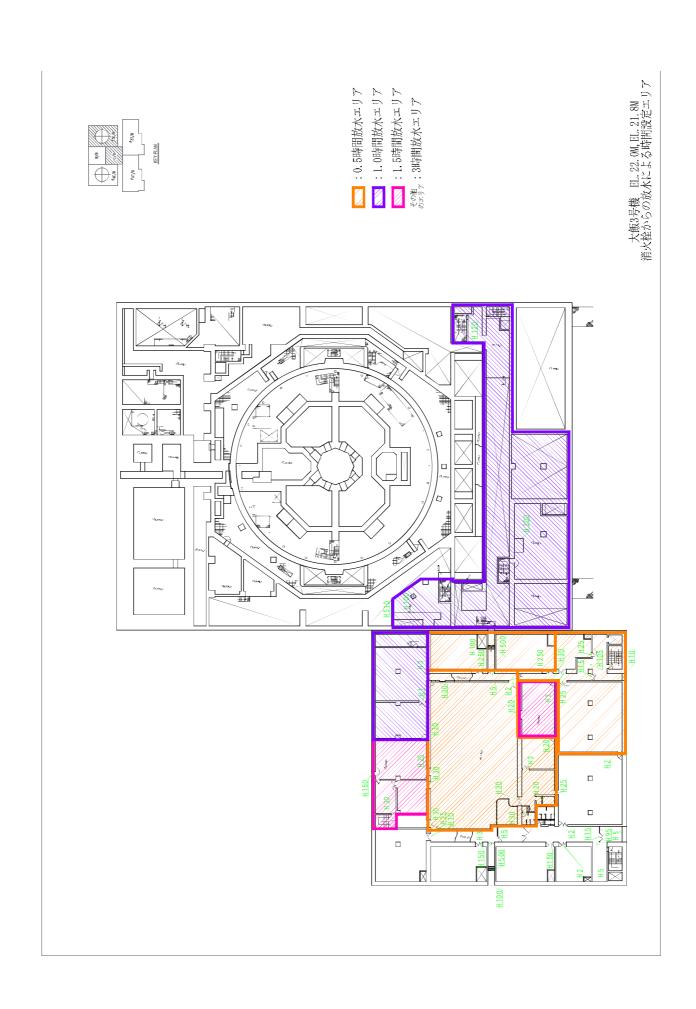
ここで F_{load} ; 火災荷重 (MJ/㎡)

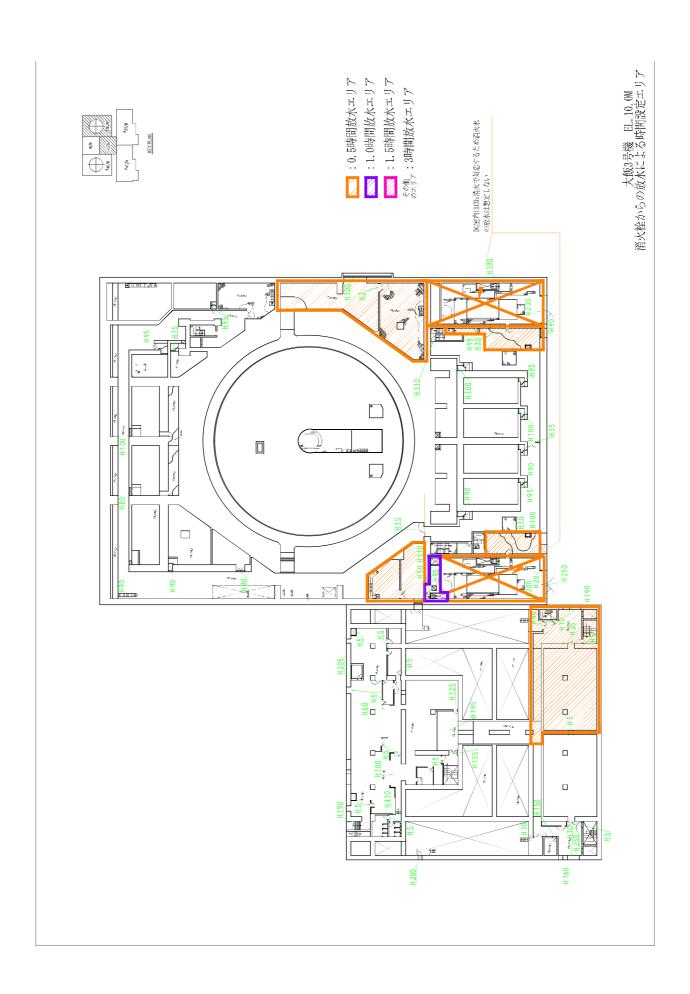
 Q_7 ; 発生熱量 (MJ) A ; 区域床面積 (m^2)

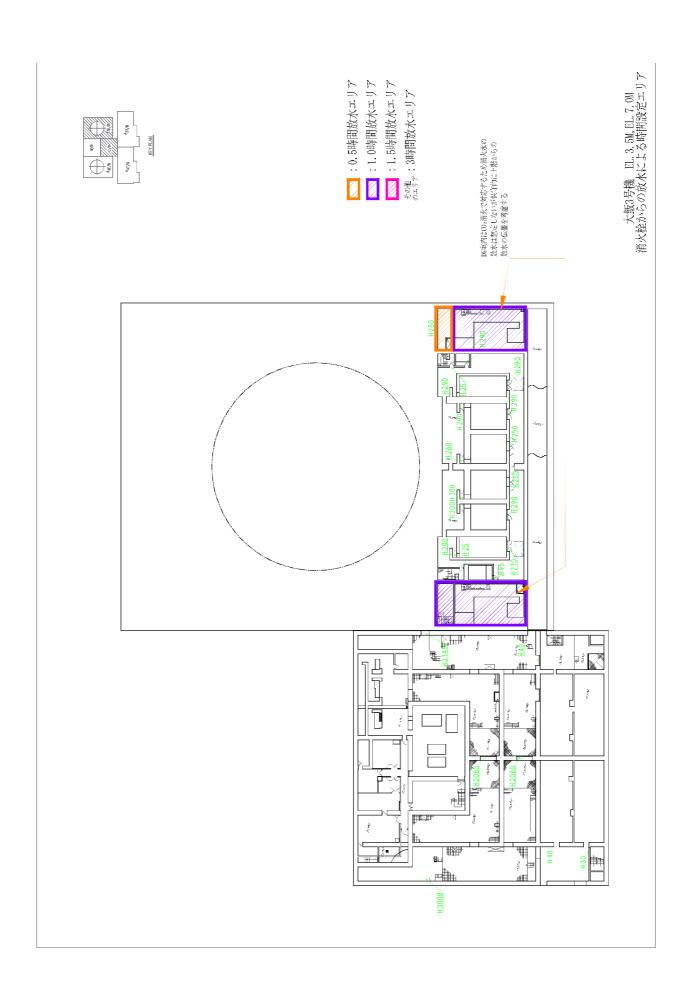
- c. 米国NFPA Handbook (表4-3参照) に示されている火災荷重と等価火災時間より,当該区域の 壁が必要とする耐火時間を求める。
- d. 耐火壁の仕様と当該区域の壁が必要とする耐火時間を比較し、耐火壁が必要な耐火時間を満足 していることを確認する。

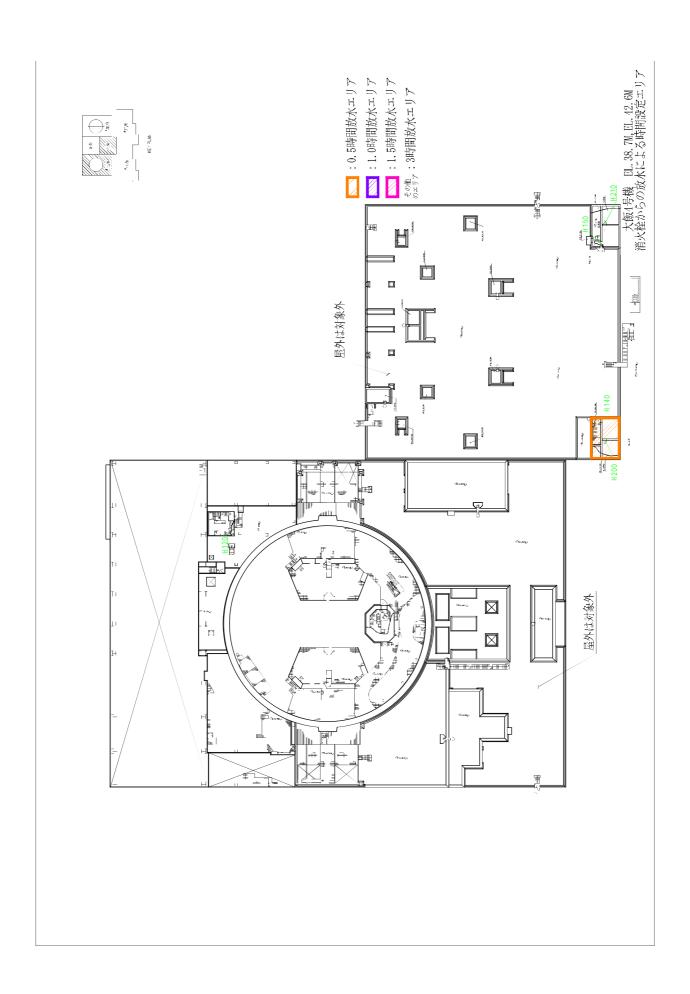

表 4-3 火災荷重と等価火災時間について

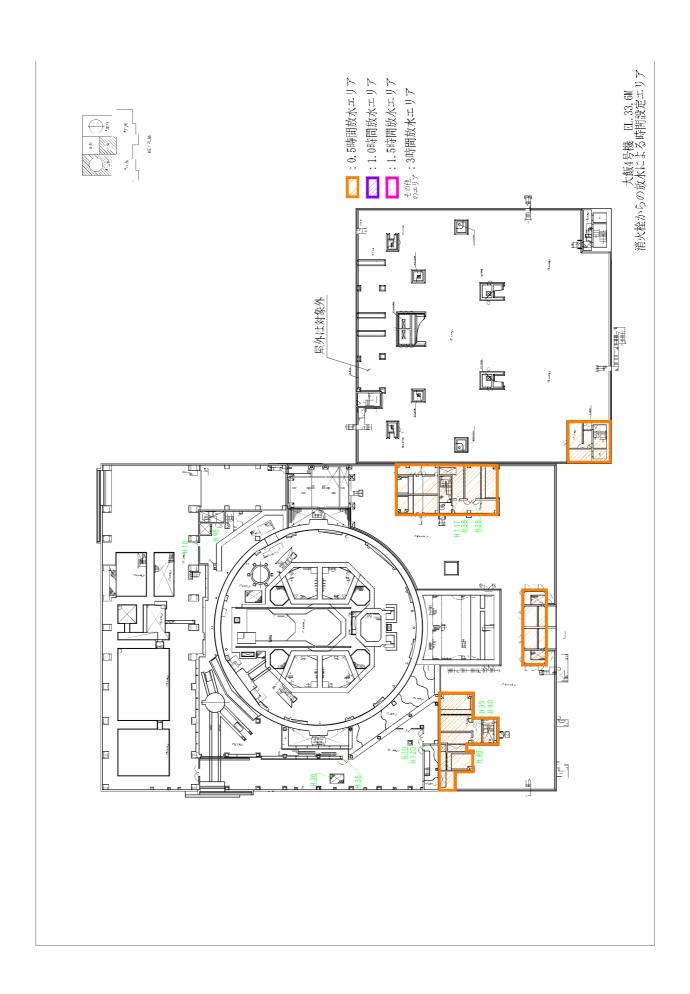

米国 NFPA	Handbook	Twe	ntieth	Edition	より)
火	災荷重		等価火災時間		
0	(J /m²)			(h)	
	454			0.5	
	909			1.0	
	1,360		l	1.5	
	1,820			2.0	
	2, 730			3.0	
	3,640			4.5	
	4, 320			7.0	
	4, 910			8.0	
	5,680			9.0	

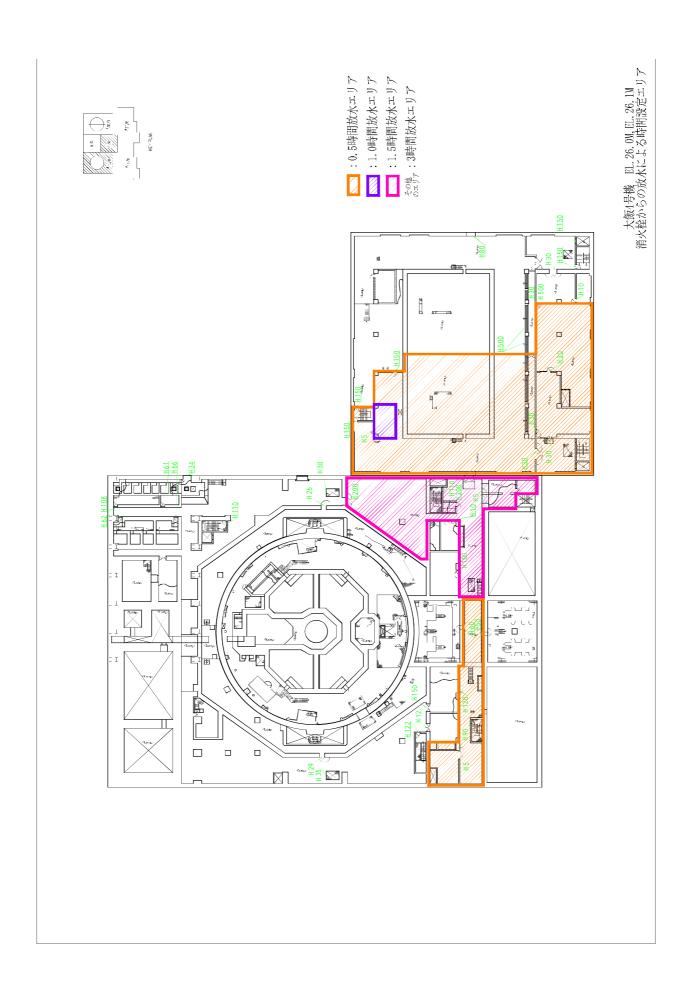

3.放水時間の設定

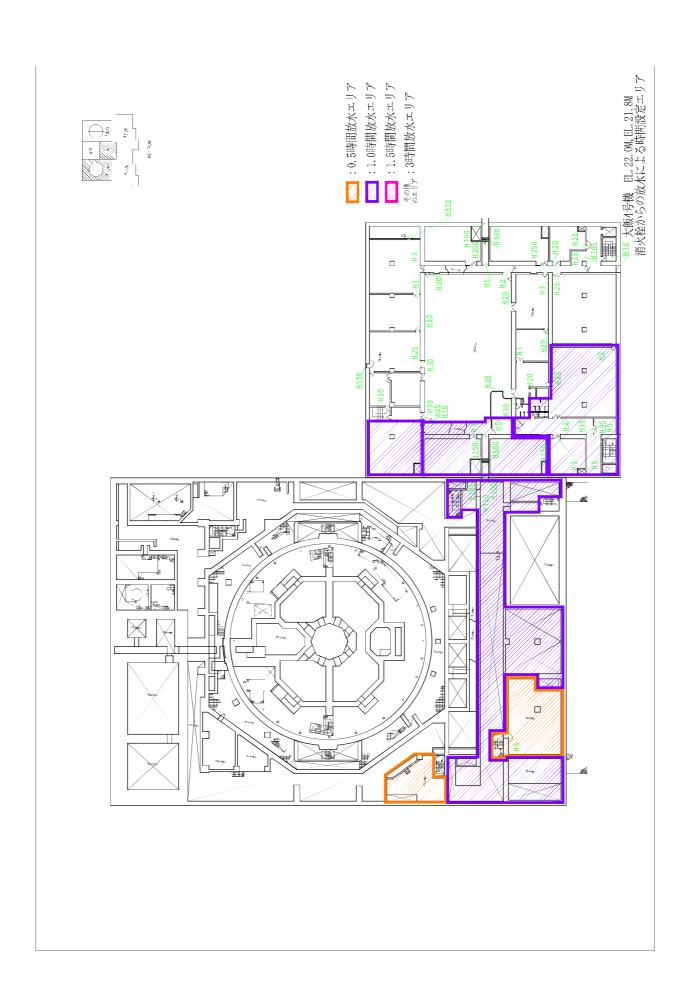

消火活動における放水時間の設定については、原則として3時間とした。

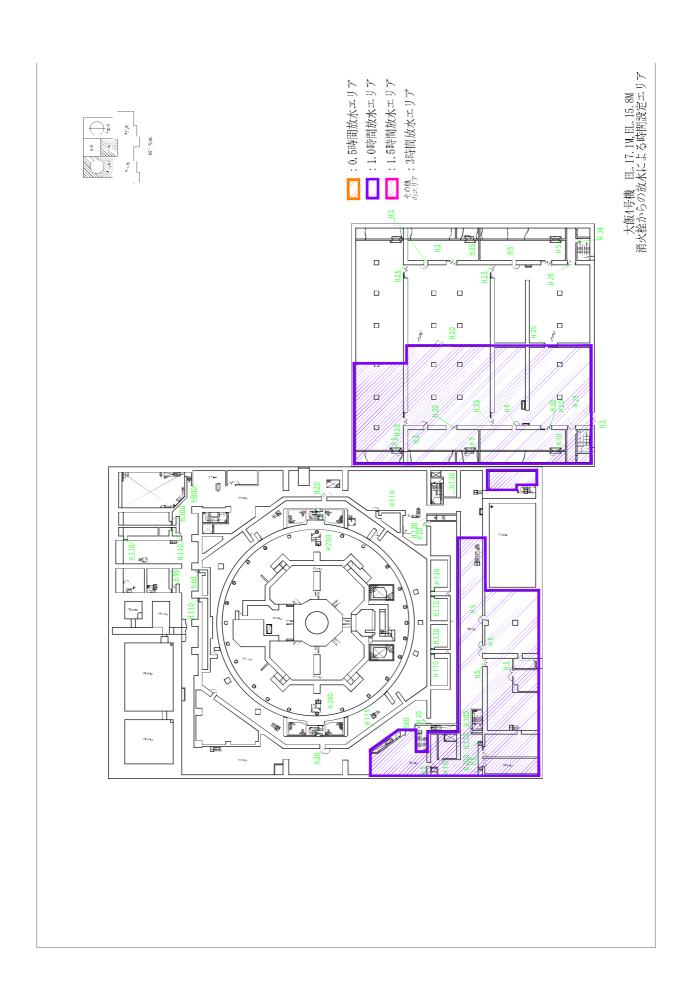

ただし、火災源が小さいエリアについては、2.の表 4-3 に従い「火災 荷重」および「等価時間」を考慮し、0.5~1.5 時間とした。

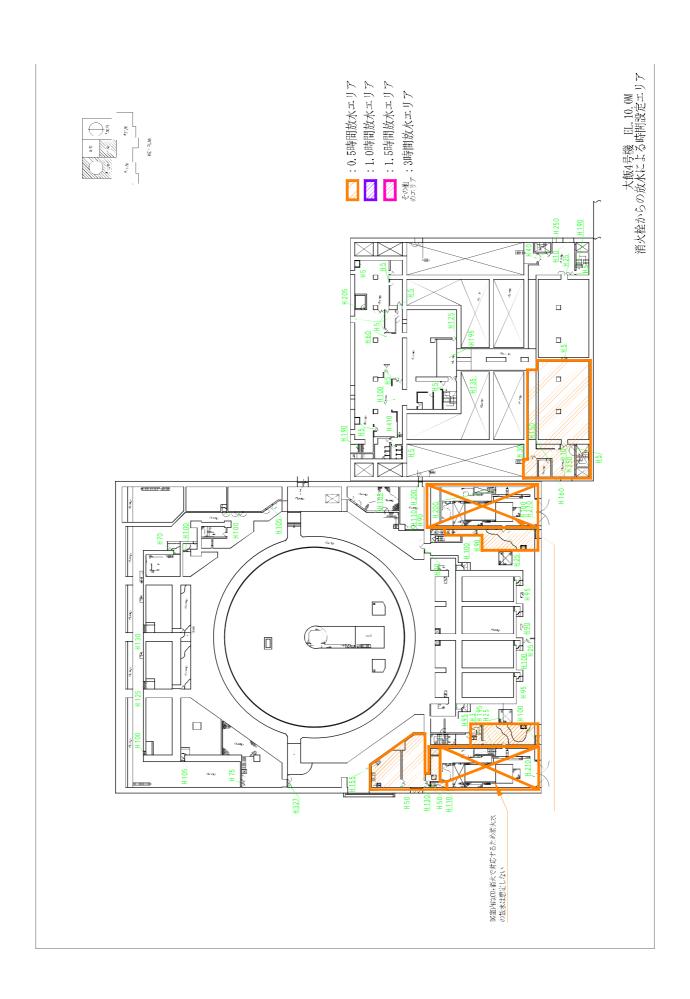


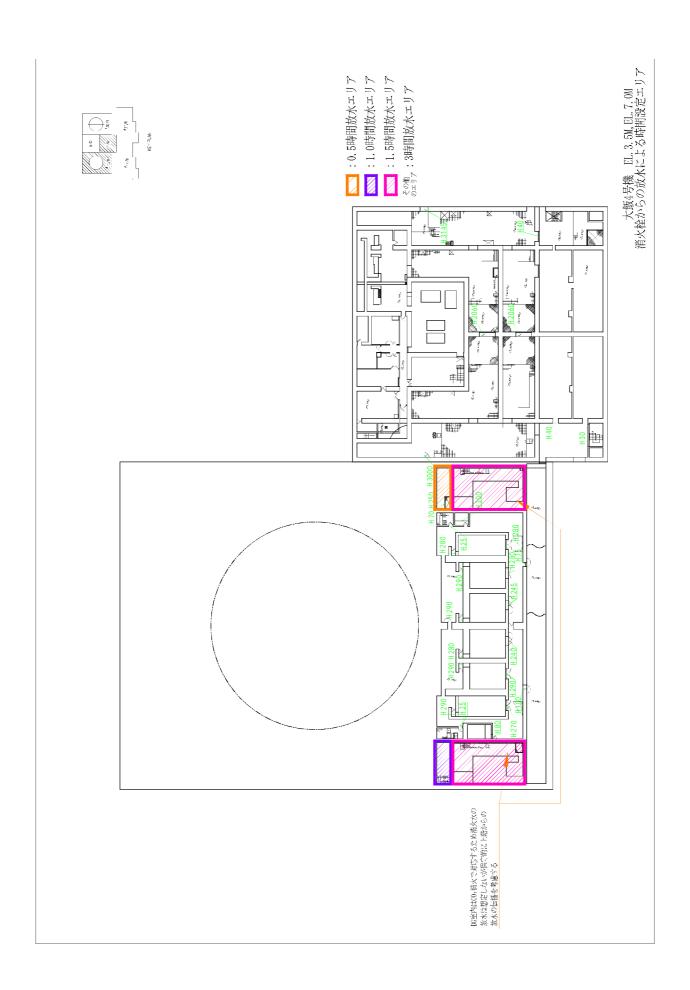












消火栓からの放水による溢水影響評価

1. はじめに

消火活動における放水量をもとに、各エリアの消火栓からの放水による溢水影響評価を実施する。

2. 溢水量の算定

消火活動における放水時間の設定については、原則として3時間とするが、火災源が小さいエリアについては、「火災荷重」および「等価時間」を考慮し、消火栓からの放水量を下記のとおり評価した。

- ·130ℓ/min/個×0.5時間×2個= 7.8m³
- ·1300/min/個×1.0時間×2個=15.6m3
- ·130ℓ/min/個 × 1.5 時間 × 2 個 = 23.4m³
- ·130ℓ/min/個 × 3 時間 × 2 個 = 46.8m³

3. 溢水影響評価

消火水の放水量を各防護対象区画にて評価し、問題ないことを確認した。なお、区画によっては消火活動により防護対象区画エリアの扉を解放することを考慮した滞留面積を用いて評価した。結果を別紙1に示す。

・各建屋、各フロアで管理区域/非管理区域毎に、機能喪失高さが低く当該エリアでクリティカルになる設備を選定し、溢水影響を確認することにより当該エリアの評価を実施した。なお、放水活動ために扉の開放が想定される場合には、隣接エリアについても滞留エリアとして考慮した。

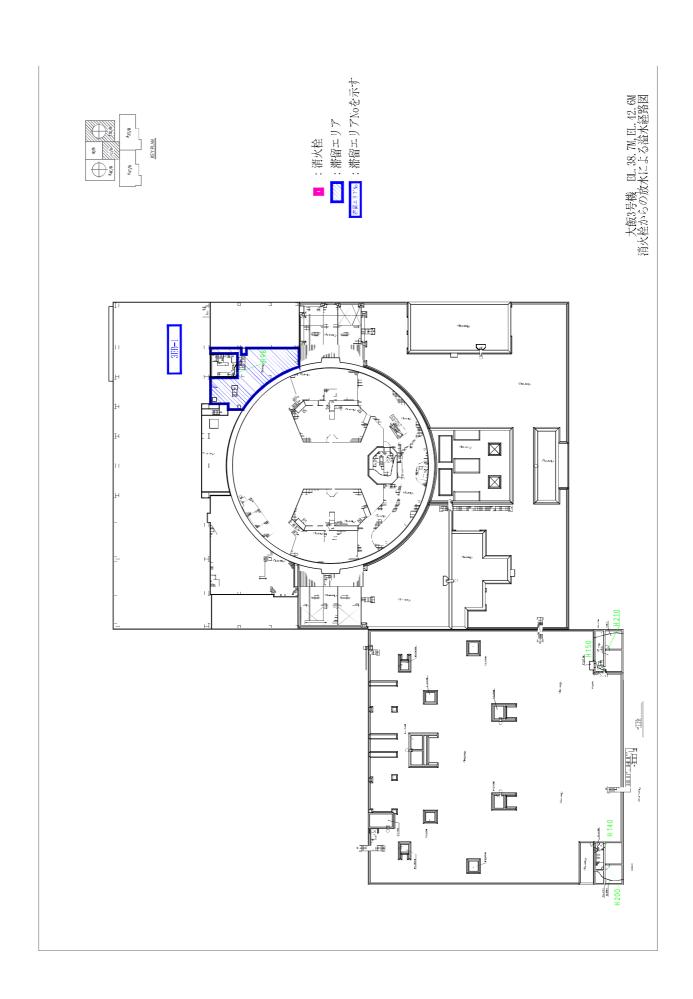
・エリアによっては、保守的に通路部だけの滞留面積をもとに溢水水位を算定し、機能喪失高さと比較を行うことにより、通路に面した各室の評価をまとめて行った。

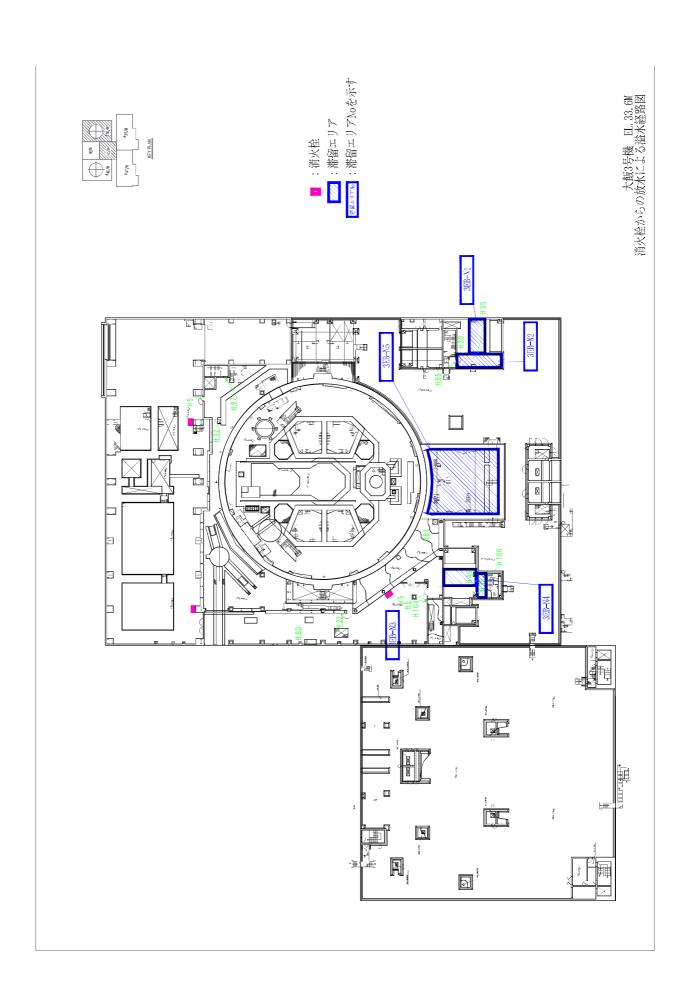
代表例として、狭隘な区画及び機能喪失高さが一般的に低い電気盤が設置されている区画の評価結果を例として以下に示す。

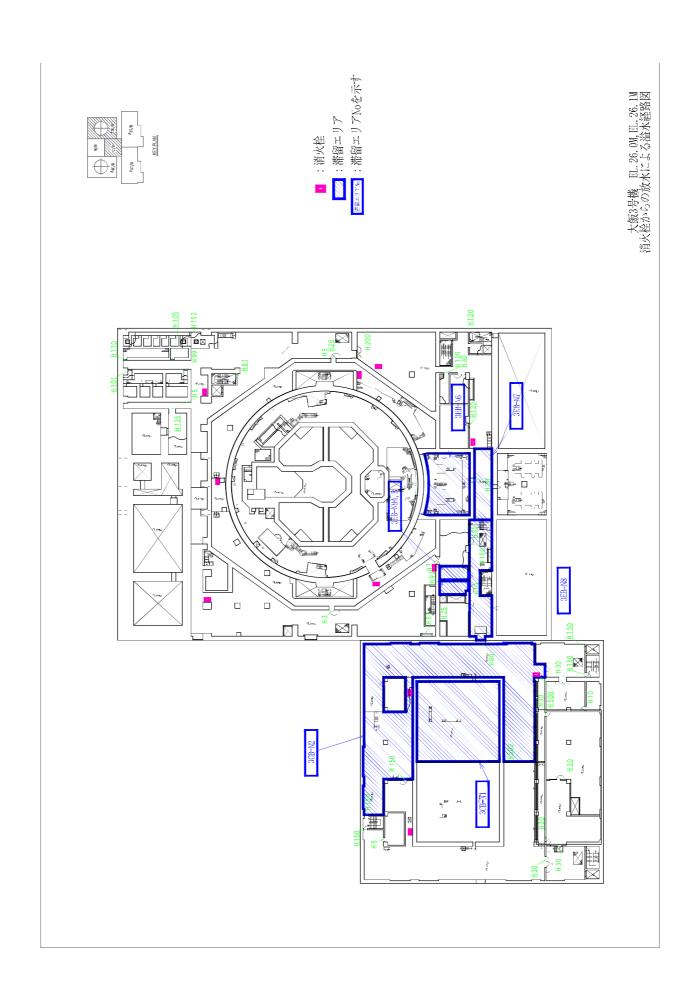
- ・狭隘な区画である電動補助給水ポンプ室は A、B ポンプエリアが 分離されており、消火活動時には扉を解放して放水することから、 両エリアに溢水が伝播した状態の溢水水位を評価し、両トレンが 同時に機能を失わないことを確認した。
- ・防護対象設備の機能喪失高さが低い区画であり、かつ室内に消火 栓が設置されている安全補機開閉器室は、A トレン室内での消火 水の放水を想定する場合、室内で滞留することとなるが、溢水水 位に対して機能喪失高さが上回るため、問題ない。なお、B トレ ン室が分離されているので、両エリアが同時に影響を受けるよう な消火活動時には扉を解放して放水することから、その場合には 更に水位が低くなる。

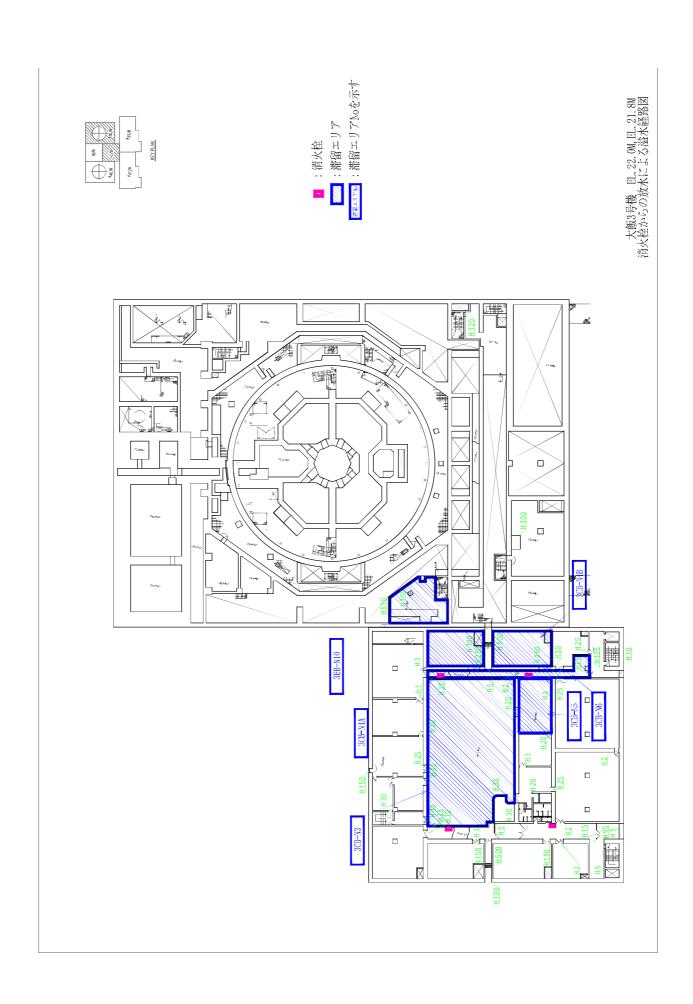
消火栓からの放水による影響評価

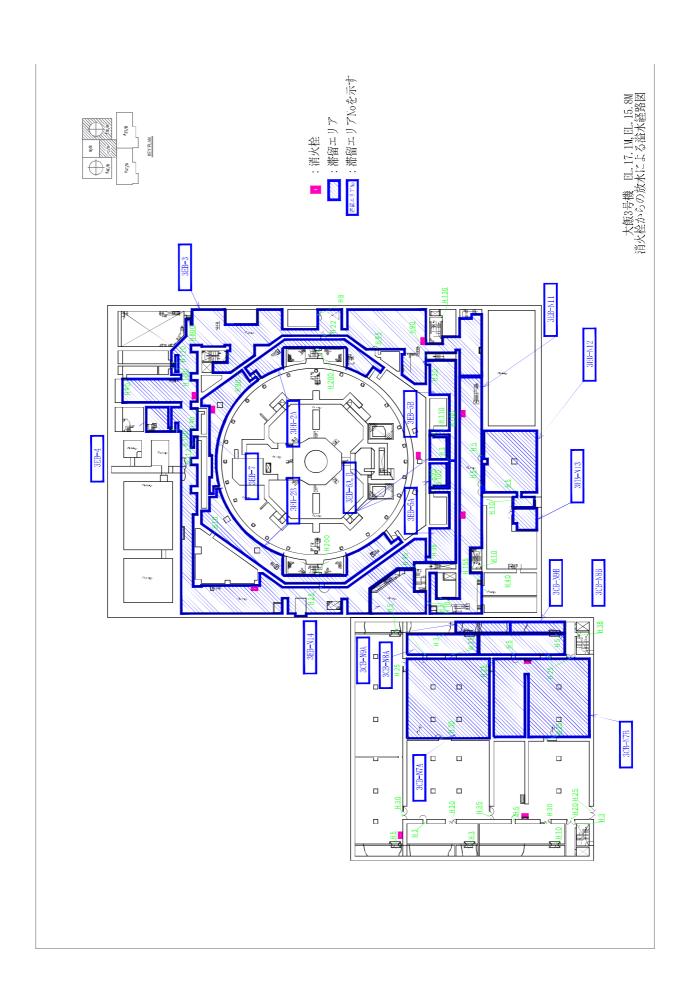
			滑音エリア 溢水量		滞留面積	******		機能喪失高さ	機能喪失高さ			T
建区	区域区分	EL.[m]	滞留エリア 番号	[m ³]	(m ²)	溢水水位 [m]	防護対象設備 5	保証表失為で (EL.[m])	保服表大局で (床上[m])	影響評価	判定	備考
		39	3EB -1	46.8 1	167.6	0.279	3原子炉補機冷却水サージタンク水位 (3LT -1200, 1201)	40.1	1.100	<		
			3EB -2A 3EB -2B	46.8 1	95.2	0.492	3A,3B制御用空気供給母管圧力 (3PT -1800,1810)	18.0	0.900	<		滞留面積が狭い3EB-2Aで評価する。
			3EB -3	46.8 1	1109.8	0.042	3A,3B燃料取替用水ポンプ	17.64	0.540	<		海火栓が設置されていない、隣接エリア内(3EB4)で消火活動を行う際は、 届を開けて放水するため、3CB3へ伝播する。よって、3CB3、4で最も機能模 失高さが低い燃料取替用水ボンブを対象に評価する(3EB4の評価は本評価に 包給される)。
		17.1	3EB -5A 3EB -5B	46.8 1	68.5	0.683	3A,3B安全補機室冷却ファン	17.94	0.840	<		滞留面積が狭い3EB-58で評価する。
	管理区域		3EB -6A 3EB -6B	46.8 1	88.9	0.527	3A,3B余熱除去ポンプミニマムフローライ ン止め弁 (3FCV-601,611)	17.8	0.700	<		滞留面積が狭い3EB-6Bで評価する。 当エリア内で消火活動を行う際は、扉を開けて放水するため、3EB-6Bへ消火水 が伝播する。よって、3EB-6Bと3EB-6Bの滞留面積を用いて評価する。
			3EB -7	46.8 1	95.1	0.492	3充てんライン格納容器隔離弁 (3V CS 157)	21.6	4.500	<		
			3EB -8	46.8 1	638	0.073	3C充てんポンプ速度制御補助盤 (3CSAC)	10.2	0.200	<		消火性が設置されていない開発するエリア内(3EB・ 94、98、104、108、102、11、12)の消火活動を行う際は、角を開けて放水するため、3EB 4へ代籍する。よって、当フロアの管理区域で離毛機能喪失高さが低 い元で、ボンブ速度制御機助強を対象に評価する(3EB・ 94、95、104、105、11、12の評価は非計機に関係される)。
		10.0	3EB -13	46.8 1	50.2	0.932	3ほう酸タンク室温度(1),(2),(3),(4) (3TS-2602,2603,2612,2613)	11.3	1.300	<		
		10.0	3EB -14A 3EB -14B	46.8 1	161.2	0.290	3A,3B余熱除去冷却器冷却水止め弁 (3V-CC-414A,B)	10.6	0.600	<		滞留面積が狭い19B-14Aで評価する。 消火性が設置されていない損掠するエリア内(3EB-15A,16A)の消火活動を行 う際は、原を開けて放水するため、3EB-14Aへ伝播する。よって、3EB- 14A,15A,16Aでも概度発失高さが低い余熟後より部度冷却火止め弁を対象に 評価する(3EB-15A,15B,16A,16Bの評価は本評価に包括される)。
		3.5	3EB 47A 3EB 47B	46.8 1	198.4	0.236	3A,3B余熱除去ポンプ出口流量 (3FT 601,611)	4.6	1.100	<		滞留面積が狭い3EB -17Aで評価する。
			3EB 48A 3EB 48B	46.8 1	198.4	0.236	34, 38高圧注入ポンプ	3.85	0.350	<		当エリア内での消火活動を行う際は、扉を開けて放水するため、3EB 47A、17B へ消火水が伝播する。よって、3EB 47A、17Bの内、海嶺面積が小さい3EB 47A にて評価する。
			3EB 49A 3EB 49B	46.8 1	198.4	0.236	3A,38余熱除去ポンプ	4.35	0.850	<		当エリア内での消火活動を行う際は、扉を開けて放水するため、3EB 47A、17B へ消火水が伝播する。よって、3EB 47A、17Bの内、滞留面積が小さい3EB 47A にて評価する。
	非管理区域	33.6	3EB -N1	7.8 2	51.8	0.151	3B1,3B2ディーゼル発電機室給気ファン	34.25	0.650	<		当エリア内で消火活動を行う際は、扉を開けて放水するため、3EB N2へ消火水が伝播する。よって、3EB N1と3EB N2を合わせた滞留面積にて評価する
			3EB -N2	7.8 2	26.7	0.292	3B1・B2ディーゼル発電機室給気ファン現 場操作箱(3LB 85)	34.8	1.200	<		
			3EB -N3	7.8 2	34.1	0.229	3A1,3A2ディーゼル発電機室給気ファン	34.25	0.650	<		当エリア内で消火活動を行う際は、岸を開けて放水するため、3EB N4へ消火水が伝播する。よって、3EB N3と3EB N4を合わせた滞留面積にて評価する
3号機 原子炉			3EB -N4	7.8 2	9.8	0.796	3A1・A2ディーゼル発電機室給気ファン現 場操作箱(3LB 84)	34.8	1.200	<		
建屋		29	3EB -N5	46.8 1	208.4		3A,3B,3C,3D主蒸気隔離弁 (3V 4KS 633A,B,C,D)	29.6	0.600	-		主蒸気管室は下階と連通しているので、3EB N7で評価する
			3EB -N6	7.8 2	83.64	-	, , , ,3A,3B,3C,3D主蒸気圧力 (3PT - 465,466,467,468,475,476,477,478,485, 486,487,488,495,496,497,498)	30.0	1.000	-		他のエリア(EL.26.0M)より高いフロアに設置されており、埋等の溢水経路上 の障害物がないため、当エリアに滞留することはないことから、影響はない。
		26	3EB -N7	46.8 1	211.2	0.222	3A,3B,3C,3D補助給水隔離弁 (3V FW 674A,B,C,D)	26.88	0.880	<		
			3EB -N8	7.8 2	105.3	0.074	3復水ビット水位 , (3LT 3760,3761)	26.05	0.050 (0.100)	<		防護対象設備周囲に100mmの堰を設置することから影響はない。
		21.3	3EB N10	7.8 2	88.6	0.088	3電動補助給水ポンプ室排気ダンバ (3D √S 411A,B)	23.3	2.000	<		
		17.1	3EB №11	15.6 3	282.2	0.055	3A・C,38・C制御用空気母管連絡弁 (3V-IA 601A,B) 3A,3B制御用空気主蒸気適が上弁等供給ライン止めず (3V-IA 505A,B)	17.6	0.500	<		
			3EB №12	15.6 3	282.2	0.055	3A,3B制御用空気圧縮機室給気ファン	17.24	0.140	<		当エリア内で消火活動を行う際は、扉を開けて放水するため、3EB Al11へ消火水が伝摘する。よって、3EB Al11の滞留面積にて評価する。
			3EB #13	15.6 3	282.2	0.055	3原子炉トリップ遮断器盤 (3RTS)	17.162	0.062	<		当エリア内で消火活動を行う際は、扉を開けて放水するため、3EB N11へ消火水が伝播する。よって、3EB N11の滞留面積にて評価する。
			3EB N14	15.6 3	282.2	0.055	3A,3B電動補助給水ポンプ室給気ファン	17.26	0.160	<		当エリア内で消火活動を行う際は、扉を開けて放水するため、3EB N11へ消火水が伝播する。よって、3EB N11の滞留面積にて評価する。
		10.0	3EB -N15A 3EB -N15B		-		ディーゼル発電機			-		DS室はCO.消火であることからエリア内の消火水の放水は想定しない。 隣接する3EB N16A, N16Bからの消火水が伝播するが、DS室は床開口で下階と連通しているため3EB N19A, N19Bの評価に包絡される
			3EB -N16A 3EB -N16B	7.8 2	53.6	0.146	3A,3Bディーゼル発電機制御盤 (3DGC A,B)	10.095	0.095			溢水水位と比べて、 機能喪失高さが低いが、A/Bトレンが東西で離れて 配置されており、同時に水没することはないため問題ない。
			3EB -N17A 3EB -N17B	7.8 2	49.4	0.158	3タービン動補助給水ポンプ起動盤A,B	10.2	0.200	<		3EB N17Aで消火活動を行う際は、扉を開けて放水するため、3EB N17Bへ消火水が伝播する。よって3EB N17Bの滞留面積にて評価する。
			3EB N18	15.6 3	24.8	0.629	3タービン動補助給水ポンプ	4.100	0.600			溢水水位と比べて、 機能喪失高さが低いが、電動補助給水ボンブが上階 にあることから、同時に水没することはないため問題ない。
		3.5	3EB -N19A 3EB -N19B	15.6 3	70.7	0.221	3A,38ディーゼル発電機	3.78	0.280	<		05室は00.消火であることから、エリア内での消火水の放水は想定しないが、 F/印音管理区域のFレンが05室に回収されることから、E/印音管理区域で最大 の放水量を起ぎする。なお、884 8、M (VISIFで皇)での放火による沿水は、 床ドレンが1/8サンプへ回収される系統構成であることから、当エリアへ伝播 はしないため問題はない。

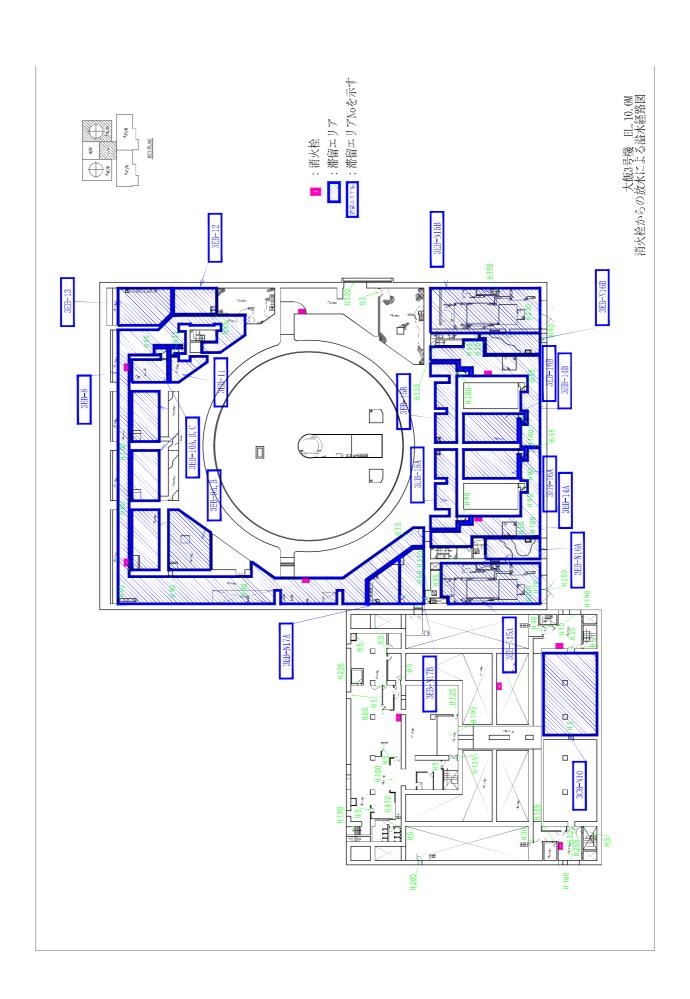

:代表評価エリア
1:39時間の放水を想定
2:0.5時間の放水を想定
4:1.59時間の放水を想定
5:対象のエリアで最も機能喪失レベルが低い機器を表す

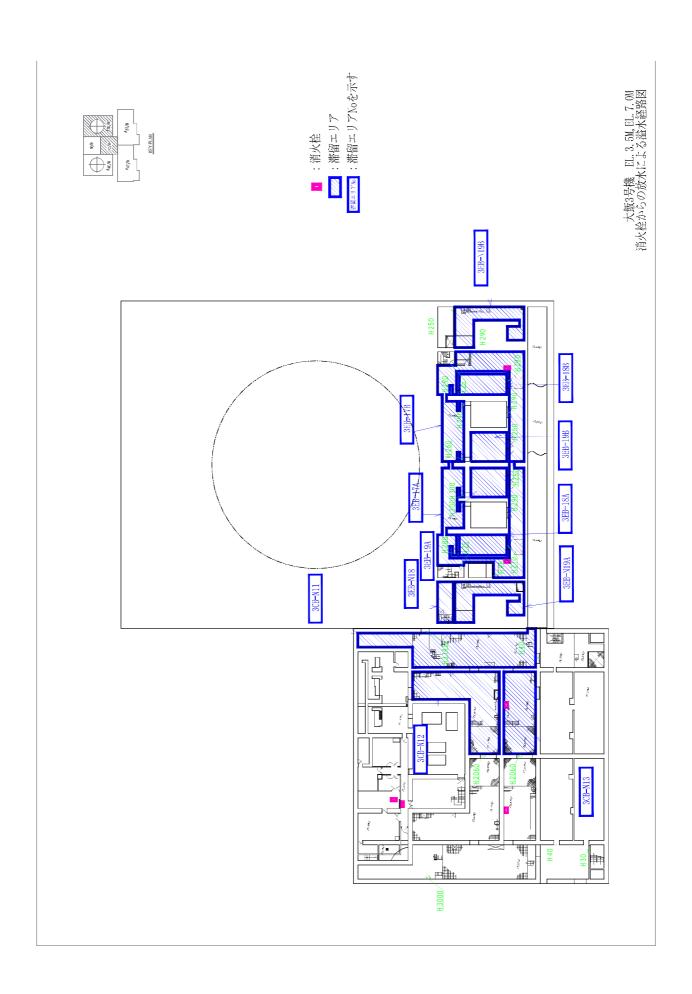

2.7 2.5 m 7.4 2.9 m 6.00 2.5 m		備者	判定	影響評価	機能喪失高さ (床上[m])	機能喪失高さ (EL.[m])	防護対象設備 5	位	溢水水位 [m]	滞留面積 [m²]	溢水量 [m ³]	滞留エリア番号	EL.[m]	区域区分	难匿
25 25 25 25 25 25 25 25				<				022							
10 10 10 10 10 10 10 10		<u> </u>		<											
10.0 10.0				-	0.000	20.4	の代の「人物」は主題をクラン	-	0.020	000.0	10.0	000 12	20.1		
21.8 22.4 10.0 2.1 10.0 0.10 10.0				<	0.100	21.9		054	0.054	430.8	23.4 4	3CB 4N3		非管理区域	
23.4 c	. 当エリア入口にはH250mmの堰 アに伝播することはないため	溢水水位と比べて、 機能喪失高さが低いが、当エリ を設置していることから、通路部等の他のエリアに伝播			0.028	21.828	3原子炉安全保護計装盤 , , , (3RPR - , , ,)	115	0.115	67.8	7.8 2		21.8		
10.8 23.4 23.2 2.4 320.2 0.07 33.3.5. <u>X. STATE PROPERTIES (1) - (1) (10.4 A.C.S.) (</u>	を開けて放水するため、30B N6 を合わせた滞留面積で評価す さ(H250mm)を超えないため伝播 で問題ないことを確認してい	する。当エリア内での消火活動を行う際は、扉を開けて へ消火水が伝摘する。よって、303 Hs-5036 Hs-6を合わせ る。308 Hs4、HsBに対しては、溢水水位が堰高さ(H250m しない。また、308 Hs1に対しては308 H3の評価で問題な る。(308 Hs-528 Hs1に防護対象設備はないが、308 Hs		<		21.828	3原子炉安全保護計裝盤 , , , (3RPR - , , ,)	194	0.194	120.5	23.4 4	3CB -N5			
15.8 15.8 22.4 20.5 2 0.07 35.5 1	とめ、機能喪失するにはA/Bト 3 N7Aと3CB N7Bを合わせた滞留	片トレンの滞留面積では水位が高い(約0.1m)ため、機 レンが同時に水没する必要があることから、3CB N7Aと3 面積で評価する。		<	0.062	15.862	3A1,3A2,3B1,3B2パワーセンタ (3PC -A1,A2,B1,B2)	040	0.040	582.8	23.4 4				
# 要項区域 23.4	放水するため、3CB N7Aへ消火 わせた滞留面積で評価する。	当エリア内で消火活動を行う際は、扉を開けて放水する水が伝播する。よって、3CB N7Aと3CB N8Aを合わせた滞		<	0.100	15.9		071	0.071	328.2	23.4 4		15.8		
10.0 359-140 7.8	と3CB N8Aと3CB N9Aを合わせた 京生高さの方が低いが A/Rト	当エリア内で消火活動を行う際は、扉を開けて放水する 3CB NTAへ消火水が伝播する。よって、3CB NTAと3CB NB 溶固面積で評価する。 溢水水位に対して、パワーセンターの 機能喪失高さ レンが機能喪失するにはもう一方のパワーセンターのエ 溢水が伝播する必要があり、その場合は滞留面積が増え		<	0.802	16.602	3A,38 蓄電池	067	0.067	347.2	23.4 4	3CB N9A 3CB N9B			
# 20		0.00ml / 7200, Njegraph 1		<	0.400	10.4	3A,3B,3C,3D空調用冷凍機	039	0.039	198.1	7.8 2	3CB №10	10.0		
10 15 15 15 15 15 15 15				<	0.700	7.7	絡弁 (3V CC 043A,B) 3A・C,3B・C原子炉補機冷却水供給母管連 絡弁		0.204	229.3	46.8 1	3CB -N11	7.0		
# 音響度区域 28.7 405 H 7.8 2 349.6 0.022 4安全条電野整理報目かかンパス (40 % 636) 31.1 2.400 <				<	2.470	9.47	(3V CC 056A,B) 3A,3B,3C,3D原子炉補機冷却水ポンプ	275	0.275	170	46.8 1	3CB №12			制御建屋
連載		I		<	2.700	9.7	3B原子炉補機冷却水冷却器海水止め弁 (3V-8W-570B)	387	0.387	121	46.8 1	3CB N13			
4GB NG 15.6 3 430.8 0.036 4原子炉安全保護計模盤 21.828 0.028				<	2.400	31.1		022	0.022	349.6	7.8 2	4CB -N1	28.7		
21.8 4/28 NAA 4/28 NAA 4/28 NAA 4/28 NAB 23.4 4 343.4 0.068 4A.48.46.40計決用電源機(1)~(3) 4/38 NAA 4/28 NAB 4/28 N				<	0.100	26.2	4A,4B中央制御室循環ファン	013	0.013	603.3	7.8 2	4CB -N2	26.1		
21.8 4/CB NAMA				<	0.100	21.9		036	0.036	430.8	15.6 3	4CB -N3	21.8		
4CB NO 15.6 3 131.9 0.118 4原子炉安全保護計製盤 , (4RPR ·) 21.828 0.028 > する。 4CB NA4、MBIC対しては、温水水位が堰高さ(H150mm 7 ない。また、4CB N3に対しては、4CB N3の評価で問題ない。また、4CB N3に対しては、4CB N3の評価で問題ない。 また、4CB N3に対しては、4CB N3の評価で問題ない。 たい。 また、4CB N3に対しては、4CB N3の評価で開題ない。 たい。 4CB N6A 4CB N6B 23.4 4 578.8 0.041 4A1,4A2、81,82/パワーセンタ (4PC A1,A2,B1,B2) 15.862 0.062 < ドトレンの滞留面積では水位が高い(約0.1m)ため、相前レンが同時に次減する必要があることから、4CB N6Aと4CB 配積で評価する。 当エリア内で消火活動を行う際は、最を開けて放水するた水が促進する。 よって、4CB N6Aと4CB N7Aを合わせた滞留 4CB N8A 4CB N7B 23.4 4 343.4 0.068 4A,4B 電電池 16.602 0.802 < 関密部積が狭い4CB NAAと評価する。 コエリア内で消火活動を行う際は、最を開けて放水するた スパルに対する。よって、4CB N6Aと4CB N7Aを合わせた滞留 4CB N8A 4CB N8B 23.4 4 343.4 0.068 4A,4B 電電池 16.602 0.802 < 関密部積が狭い4CB NAA・イデルで記載する。よって、4CB N6Aと4CB としたが開始できる。よって、4CB N6Aと4CB としたが開始できる。よって、4CB N6Aと4CB としたが行に指する。よって、4CB N6Aと4CB としたが行に関する。よって、4CB N6Aと4CB としたが行に関する。ようで、4CB N6Aと4CB としたが行に関する。ようで、4CB N6Aと4CB としたが行に関する。ようで、4CB N6Aと4CB としたが行に関する。ようで、4CB N6Aと4CB にはらったりにはらったの、関連的状態にはらったの、関連的状態にはらったの、関連的状態にはらったの、関連ない、4CB N6B とも、4CB N6B N6B とも、4CB N6B とも、4CB N6B N6B N6B N6B N6B とも、4CB N6B N6B N6B N6B N6B N6B N6B N6B N6B N6	当エリア人口にはH150mmの堰 Pに貯水され、残り約5.5㎡。 5㎡)が40B N5へ伝播する。 カ入口堰(H150mm)以下である Bトレンの両方が同時に影響を	溢水水位と比べて、 機能喪失高さが低いが、当エリを設置していることから、溢水の一部は当エリアに貯水 (67.8㎡×0.15m=10.1㎡、15.6㎡-10.1㎡=5.5㎡)が の時の4C8 N5の水位は約0.10㎡であり、4C8 N4Bの入口に ことか5408 N4Bには溢水は伝播しないので、A/Bトレン				21.828	4原子炉安全保護計装盤 , , , (4RPR - , , ,)	230	0.230	67.8	15.6 з				
### ### ### ### ### ### ### ### ### #	-1150mm)を超えないため伝播し	する。 4CB N4A、N4Bに対しては、溢水水位が堰高さ(H150mm)		>	0.028	21.828	4原子炉安全保護計装盤 , , , (4RPR - , ,)	118	0.118	131.9	15.6 ³	4CB -N5			
15.8 水が圧揚する。よって、408 NbL 4CB N7Aを合わせた海島 水が圧揚する。よって、408 NbL 4CB N7Aを合わせた海島 水が圧揚する。よって、408 NbL 4CB NARを合わせた海島 当エリア内で海火活動を行う際は、屋を開けて放水するた 及び408 NbC -河火水が圧揚する。よって、408 NbL 4CB NBC セル海道面積でが増入て、及び408 NbC -河火水が圧揚する。よって、408 NbL 4CB NBC セル海道面積でが増入で、10.008 NbC -河火水が圧揚する。よって、408 NbL 4CB NBC セル海道面積で増入して、パワーセンターの 機能喪失高さの セルンが振襲突するにはもう一方のパーセンターの は 温水が圧満する必要があり、その場合は海道面積が増入で 10.008 NbC - 10.008	cめ、機能喪失するにはA/Bト 3 N6Aと4CB N6Bを合わせた滞留	レンが同時に水没する必要があることから、4CB-N6Aと4		<	0.062	15.862		041	0.041	578.8	23.4 4	4CB N6A 4CB N6B	15.8		
4CB NBA 4CB	汝水するため、4CB NGAへ消火 わせた滞留面積で評価する。	水が伝播する。よって、4CB N6Aと4CB N7Aを合わせた滞		<	0.100	15.9	4A,4B,4C,4D計装用電源盤(1)~(3) (4IBC-A,B,C,D)	072	0.072	325.7	23.4 4	4CB N7A 4CB N7B			
10.0 4C8 NO 7.8 2 198.1 0.039 4A,48,40,40空調用冷凍機 10.4 0.400 < 4A - C,48 - C原子仲植機冷却水炭り母管連 絡弁 (4V CC 043A,B) 7.7 0.200	N6Aと4CB N7Aと4CB N8Aを合わ 喪失高さの方が低いが、A/Bト	当エリア内で消火活動を行う際は、扉を開けて放水する 及び4CB NGAへ消火水が伝播する。よって、4CB NGAと4C せた滞留面積で評価する。 溢水水位に対して、パワーセンターの 機能喪失高さ		<	0.802	16.602	4A,4B蓄電池	068	0.068	343.4	23.4 4				
852 Man 46 9 4 20 9 9 0 0 07 (44 VCC 0434, B) 7 7 0 200				<	0.400	10.4			0.039	198.1	7.8 2	4CB -N9	10.0		
7.0 4A · C · (AB · C順子序程機/治助水供給母管達 絡弁 (4V CC · 056A, B)				<	0.700	7.7	絡弁 (4V CC 043A,B) 4A・C,4B・C原子炉補機冷却水供給母管連 終弁	207	0.207	226.3	46.8 1	4CB №10	7.0		
4C8 H11 46.8 1 170 0.275 4A,4B.4C.4DBデヤ機構を超水パンプ 9.47 2.470 <				<	2.470	9.47		275	0.275	170	46.8 1	4CB N11			
4C8 N12 46.8 1 121 0.387 4B原子炉補機冷却水冷却器海水止め弁 9.7 2.700 <				<	2.700	9.7	4B原子炉補機冷却水冷却器海水止め弁 (4V-SW-570B)	387	0.387	121	46.8 1	4CB N12			

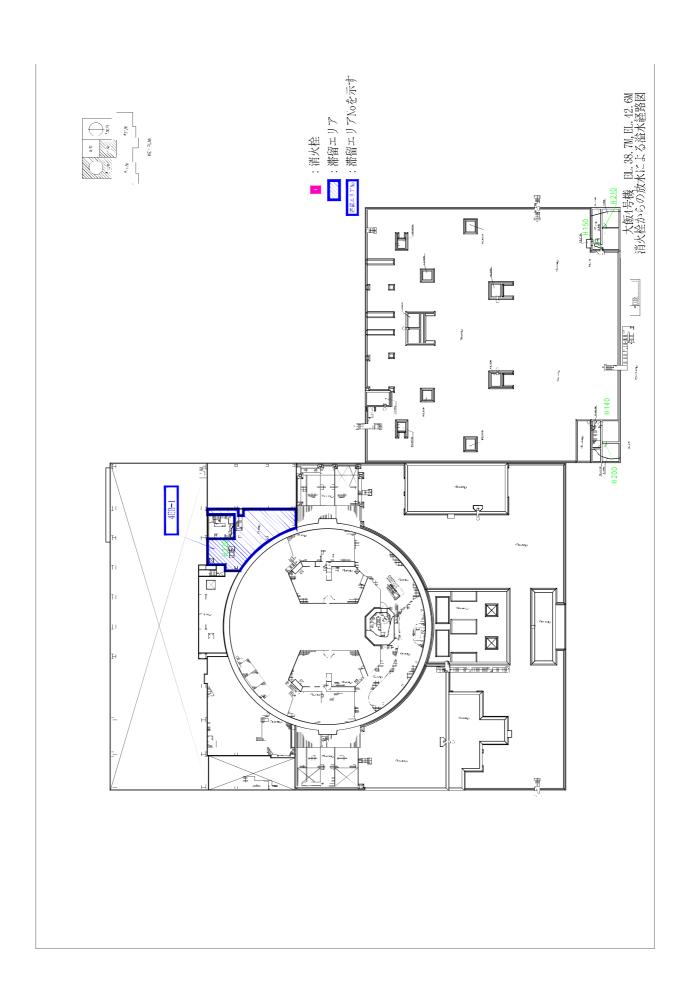

: 代表評価エリア 1:34間の放水を想定 2:0.58間の放水を想定 3:1.68間の放水を想定 4:1.58間の放水を想定 5:対象のエリアで最も機能喪失レベルが低い機器を表す

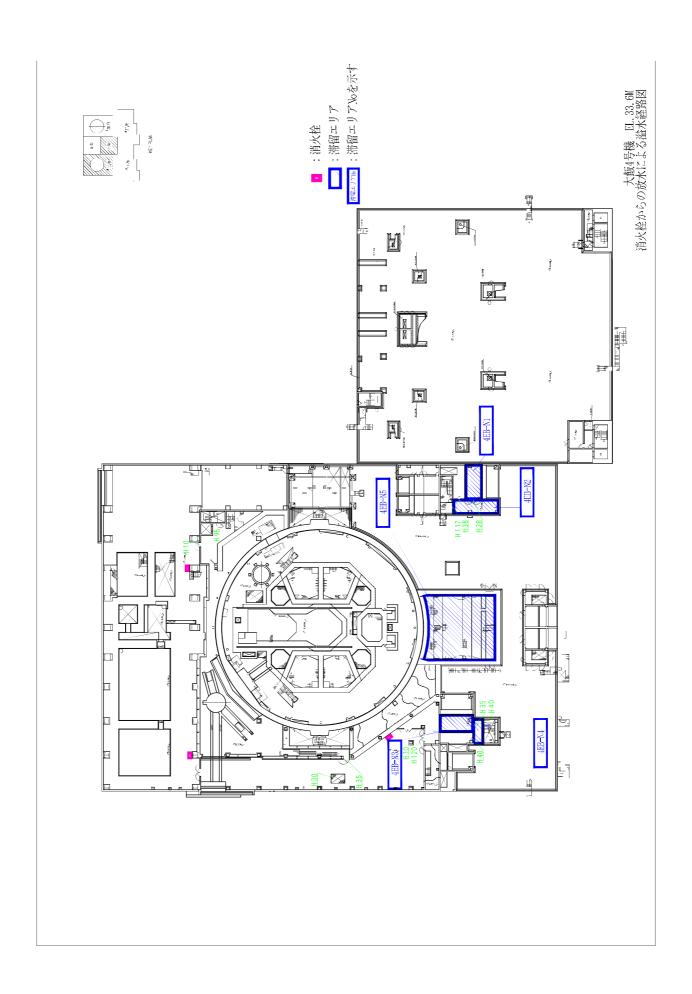

难用	区域区分	EL.[m]	滞留エリア 番号	溢水量 [m ³]	滞留面積 [m²]	溢水水位 [m]	防護対象設備 5	機能喪失高さ (EL.[m])	機能喪失高さ (床上[m])	影響評価	判定	備等
		39	4EB -1	46.8 1	167.6	0.279	4原子炉補機冷却水サージタンク水位 (4LT -1200, 1201)	40.0	1.000	<		
			4EB -2A 4EB -2B	46.8 1	95.2	0.492	4A,4B制御用空気供給母管圧力 (4PT-1800,1810)	18.2	1.100	<		滞留面積が狭い4EB-2Aエリアで評価する。
			4EB -3	46.8 1	1142	0.041	4A,4B燃料取替用水ポンプ	17.65	0.550	<		消火柱が設置されていない、隣接エリア内(4EB4)の消火活動を行う際は、 展を開けて放水するため、4EB3へ伝播する。よって、4EB3、4で最も機能喪 失高さが低い燃料取替用水ポンプを対象に評価する(4EB4の評価は本評価に 包絡される)。
		17.1	4EB -5A 4EB -5B	46.8 1	64.7	0.723	4A,4B安全補機室冷却ファン	17.9	0.800	<		滞留面積が狭い4EB-58で評価する。
	管理区域		4EB -6A 4EB -6B	46.8 1	89.15	0.525	4A,4B余熟除去ポンプミニマムフローライ ン止め弁 (4FCV-601,611)	17.8	0.700	<		海留面積が狭い4EB 6Bで評価する。 当エリア内で消火活動を行う際は、屋を開けて放水するため、4EB 6Bへ消火水 が伝謝する。よって、4EB 6Bと4EB 6Bの海留面積を用いて評価する(4EB 6の 評価は本評価に包絡される)。
			4EB -7	46.8 1	95.1	0.492	4充てんライン格納容器隔離弁 (4V CS 457)	21.6	4.500	<		
		10.0	4EB -8	46.8 1	585.3	0.080	4C充てんポンプ速度制御補助盤 (4CSAC)	10.2	0.200	<		消火栓が設置されていない隣接するエリア内 (4EB - 98-86) 10,105,1105,1105,1117 (1),117 (1),117 (1),1117 (1),1117 (1),1117 (1),1117 (1),1117 (1),1117 (1),1117 (1),1117 (1),1117 (1),1117 (1),1117 (1),1117 (1),1117 (1),1117
			4EB -13	46.8 1	50.2	0.932	4ほう酸タンク室温度(1),(2),(3),(4) (4TS-2602,2603,2612,2613)	11.4	1.400	<		
			4EB 14A 4EB 14B	46.8 1	146.5	0.320	4A,4B余熊除去冷却器冷却水止め弁 (4V CC 414A,B)	10.6	0.600	<		滞留面積が狭い4EB-14Aで評価する。 消火性が設置されていない隣接するエリア内(4EB-15A,16A)の消火活動を行 う際は、原を開けて放水するため、4EB-14Aへ伝播する。よって、4EB 4AA、15A,1ACB 毎級優長央高が低い場合熱を対望的が止か分を対象に 評価する(4EB-15A,15B,16A,16Bの評価は本評価に包結される)。
		3.5	4EB -17A 4EB -17B	46.8 1	189.1	0.248	4A,4B余熱除去ポンプ出口流量 (4FT 601,611)	4.5	1.000	<		滞留面積が狭い4EB-17Aで評価する。
			4EB -18A 4EB -18B	46.8 1	219.7	0.213	4A, 48高圧注入ポンプ	3.85	0.350	<		当エリア内で消火活動を行う際は、扉を開けて放水するため、4EB 47A、17Bへ 消火水が伝播する。よって、4EB 47A、17Bの内、滞留面積が小さい4EB 47Aに て評価する。
			4EB -19A 4EB -19B	46.8 1	198.4	0.236	4A, 4B余熱除去ポンプ	4.35	0.850	<		当エリア内で消火活動を行う際は、産を開けて放水するため、4EB 47A、17Bへ 消火水が伝播する。よって、4EB 47A、17Bの内、滞留面積が小さい4EB 47Aに て評価する。
	非管理区域	33.6	4EB -N1	7.8 2	51.8	0.151	4B1,4B2ディーゼル発電機室給気ファン	33.9	0.300	<		当エリア内で消火活動を行う際は、扉を開けて放水するため、4EB N2へ消火水が伝播する。よって、4EB N1と4EB N2を合わせた滞留面積にて評価する
			4EB -N2	7.8 2	26.7	0.292	4B1・B2ディーゼル発電機室給気ファン現 場操作箱(4LB 85)	34.8	1.200	<		
			4EB -N3	7.8 2	34.1	0.229	4A1,4A2ディーゼル発電機室給気ファン	33.9	0.300	<		当エリア内で消火活動を行う際は、扉を開けて放水するため、4EB N4へ消火水が伝播する。よって、4EB N3と4EB N4を合わせた滞留面積にて評価する
4号機 原子炉 建屋			4EB -N4	7.8 2	9.8	0.796	4A1・A2ディーゼル発電機室給気ファン現 場操作箱(4LB 84)	34.8	1.200	<		
		29	4EB -N5	46.8 1	211.2	-	4A,4B,4C,4D主蒸気隔離弁 (4V MS 633A,B,C,D)	29.6	0.600	-		主蒸気管室は下階と連通しているので、408-47で評価する
			4EB +N6	7.8 2	83.64		, , , , ,4A,4B,4C,4D主蒸気圧力 (4PT - 465,466,467,468,475,476,477,478,485, 486,487,488,495,496,497,498)	30.0	1.000	-		他のエリア(EL.26.0M)より高いフロアに設置されており、堰等の溢水経路上 の障害物がないため、当エリアに滑留することはないことから、影響はない。
		26	4EB -N7	46.8 1	208.4	0.225	4A, 4B, 4C, 4D補助給水隔離弁 (4V FW 574A, B, C, D)	26.93	0.930	<		
		26	4EB -N8	7.8 2	105.3	0.074	4復水ビット水位 , (4LT 3760,3761)	26.06	0.060 (0.100)	<		防護対象設備周囲に100mmの堰を設置することから影響はない。
		21.3	4EB N11	7.8 2	77.9	0.100	4電動補助給水ポンプ室排気ダンパA,B (4D √S 411A,B)	23.7	2.400	<		
		17.1	4EB №12	15.6 3	283.2	0.055	4A・C,4B・C制御用空気母管連絡弁 (4V・IA 601A,6) 4A,4B制御用空気主蒸気透が少弁等供給ライン止かり (4V・IA 605A,8)	17.6	0.500	<		
			4EB N13	15.6 3	283.2	0.055	4A,4B制御用空気圧縮機室給気ファン	17.4	0.300	<		当エリア内で消火活動を行う際は、扉を開けて放水するため、4EB 412へ消火水が伝播する。よって、4EB 412の滞留面積にて評価する。
			4EB N14	15.6 3	283.2	0.055	4原子炉トリップ遮断器盤 (4RTS)	17.162	0.062	<		当エリア内で消火活動を行う際は、扉を開けて放水するため、4EB H12へ消火 水が伝播する。よって、4EB H12の滞留面積にで評価する。
			4EB N15	15.6 ³	283.2	0.055	4A,4B電動補助給水ポンプ室給気ファン	17.26	0.160	<		当エリア内で消火活動を行う際は、扉を開けて放水するため、4EB 412へ消火 水が伝播する。よって、4EB 412の滞留面積にて評価する。
		10.0	4EB N16A 4EB N16B	-	-	-	ディーゼル発電機	-	-	-		OS室はCO5消火であることからエリア内の消火水の放水は想定しない。 精接する4EB 4174、N178からの消火水が伝摘するが、DS室は床開口で下階と遭 適しているため4EB 422A、N2CBの評価に包絡される
			4EB -N17A 4EB -N17B	7.8 2	53.6	0.146	4A,4Bディーゼル発電機制御盤 (4DGC A,B)	10.095	0.095			溢水水位と比べて、 機能喪失高さが低いが、A/Bトレンが東西で離れており、同時に水没することはないため問題ない。
			4EB -N18A 4EB -N18B	7.8 2	47.9	0.163	4タービン動補助給水ポンプ起動盤A,B (4TDF-A,B)	10.2	0.200	<		4EB N18Aで消火活動を行う際は、扉を開けて放水するため、4EB N18Bへ消火水が伝播する。よって4EB N18Bの滞留面積にて評価する。
			4EB N19	15.6 з	24.8	0.629	4タービン動補助給水ポンプ	4.1	0.600			溢水水位と比べて、 機能喪失高さが低いが、電動補助給水ポンプが上階 にあることから、同時に水没することはないため問題ない。
		3.5	4EB N20A 4EB N20B	23.4 4	70.7	0.331	4A, 48ディーゼル発電機	3.78	0.280			OS室は20.清州であることから、エリア内での清州火水の放水は想定しないが、 に非き種度化像トレンが0室角ののセナンではませることから4.61 管理 区域で最大の放火量を想定する。 必然水位と比べて、機能機失高さが低いが、A/Bトレンが同時に水没する ことはないため問題が2世になりが逆流により458 そ200から468 4208へ伝摘す のが、海笛順格が2世になりが逆がか。150%に下からため、問題なり、な 収される永純単位である。
N.E	区域区分	EL.[m]	滞留エリア 番号	溢水量 [m³]	滞留面積 [m²]	溢水水位 [m]	防護対象設備	機能喪失高さ (EL.[m])	機能喪失高さ (床上[m])	影響評価	判定	備等
海水ポンプ	非管理区域	2.5	-	46.8 1	548.6	0.085	4A,4B,4C海水ポンプ 4A,4B海水供給母管A,B連絡弁	4.65	2.150	<		
エリア			-	46.8 1	548.6	0.085	4A,4B海水供給母官A,B連絡并 (4V SW 615A,B)	3.3	0.800	<		

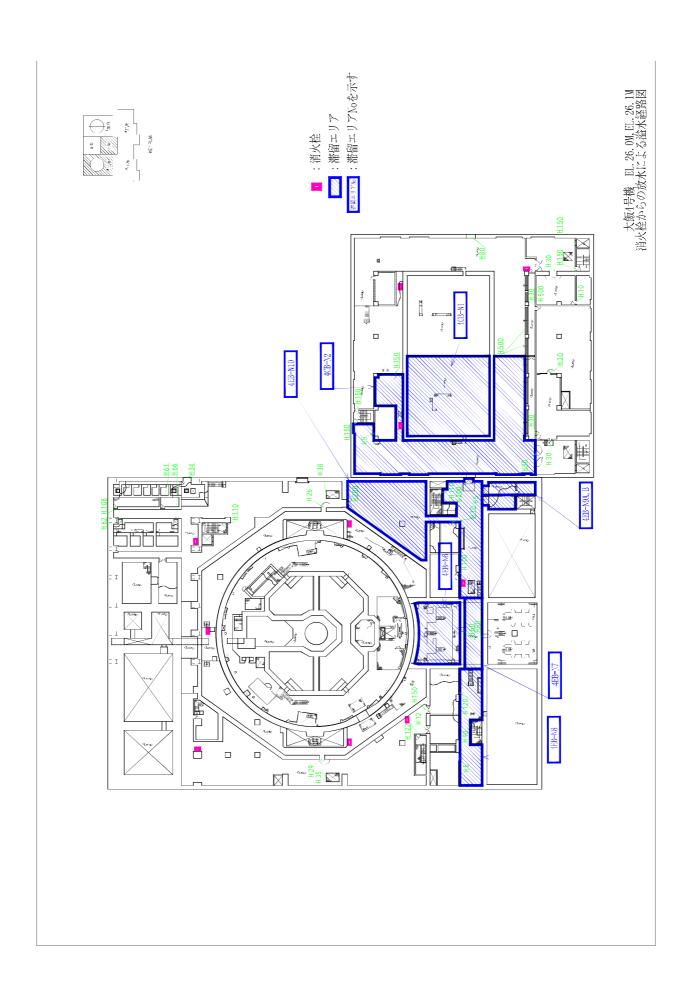

[:]代表評価エリア 1:39周間の放水を想定 2:0.5時間の放水を想定 3:1.05時間の放水を想定 4:1.5時間の放水を想定 5:対象のエリアで最も機能機失レベルが低い機器を表す

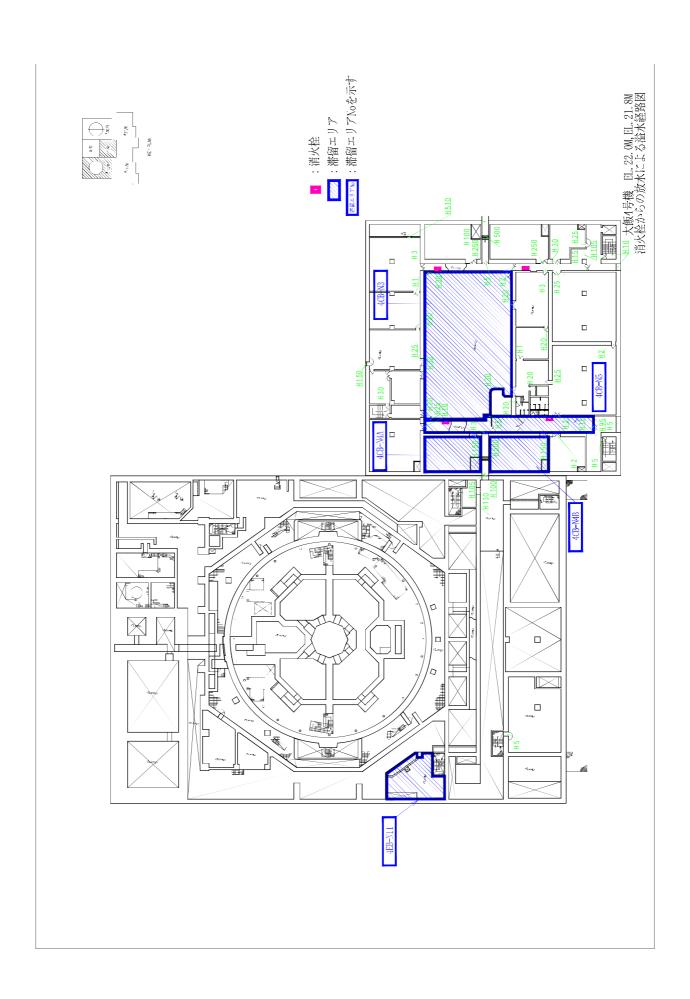


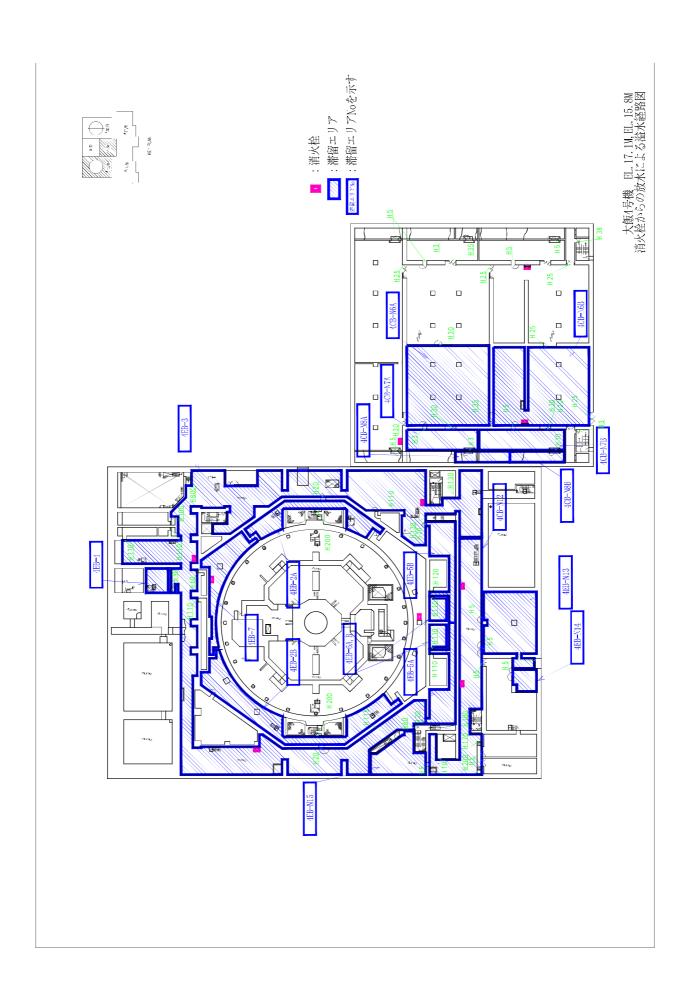


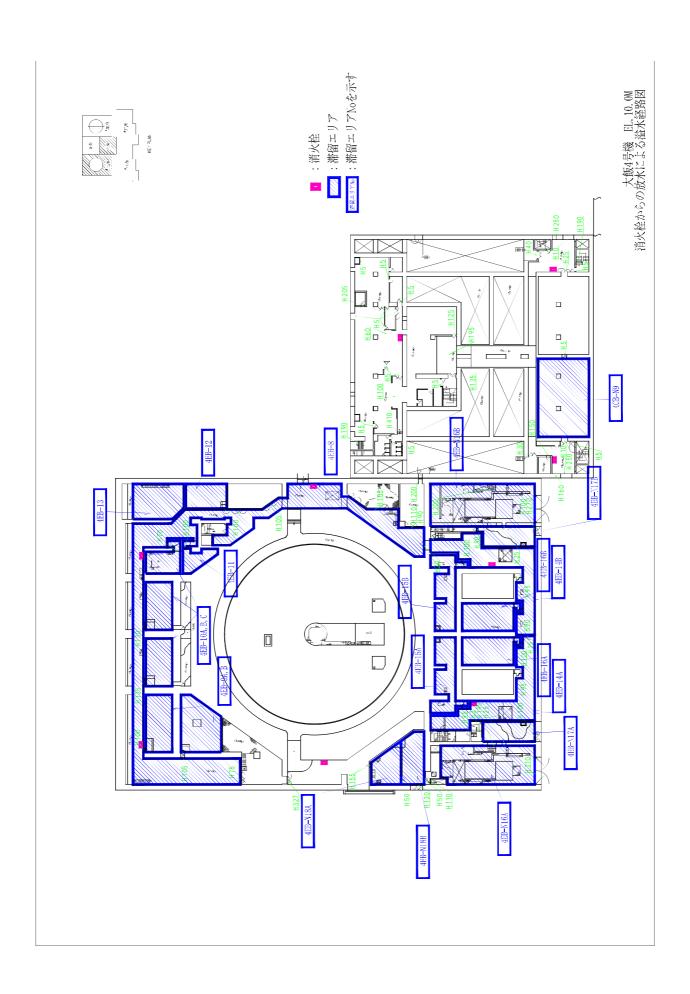


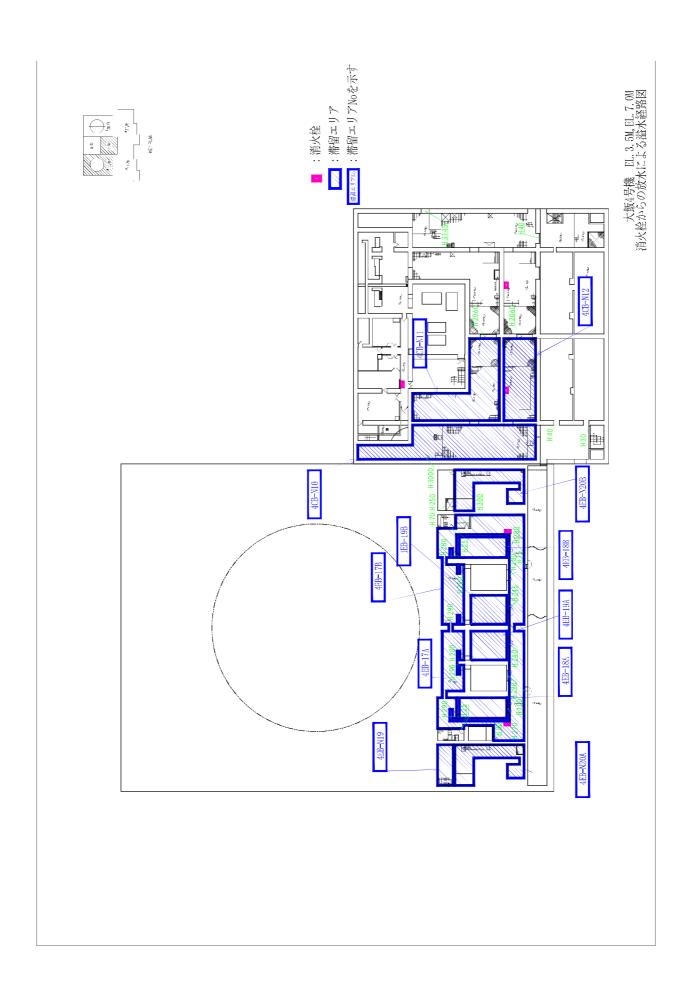


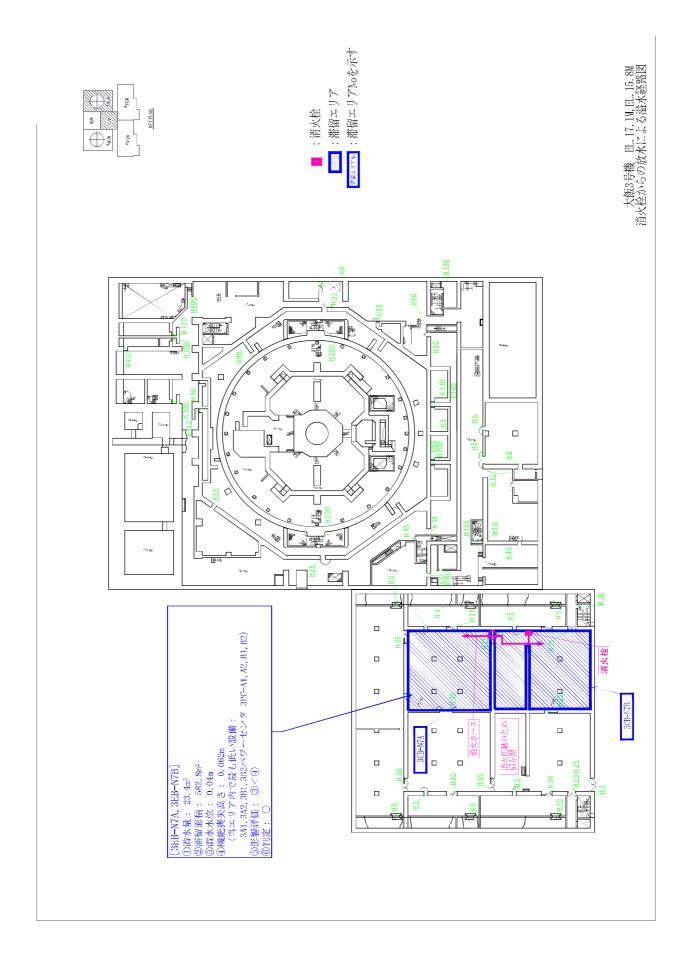


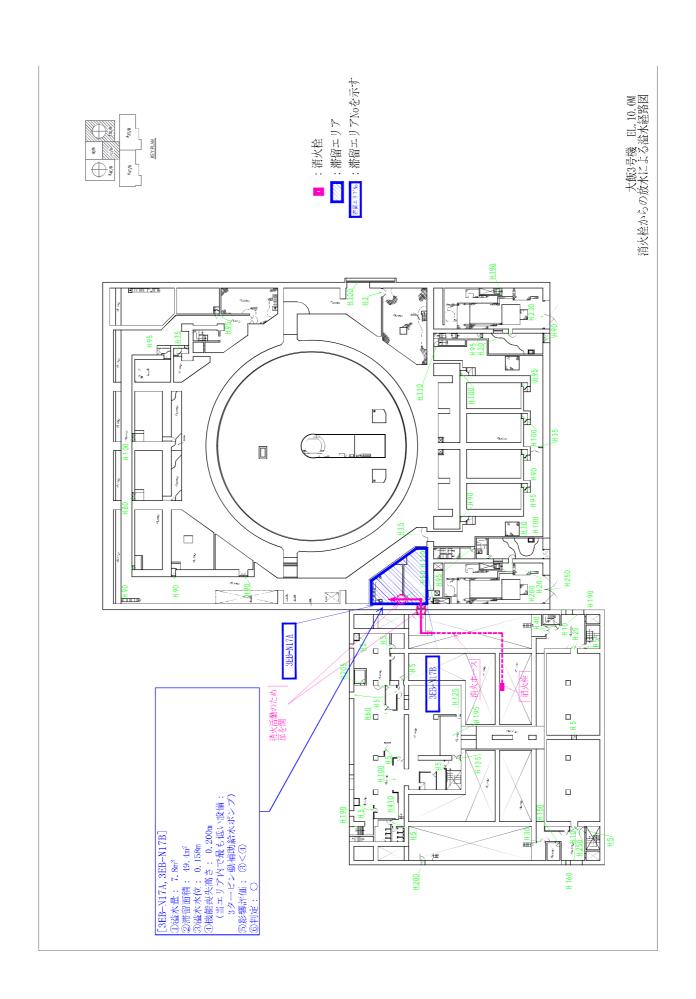












添付資料10

耐震 B、Cクラス機器の耐震性評価方法及び評価結果

1. はじめに

地震時に流体を内包する耐震 B、C クラス機器(配管、容器)が破損することで、重要度の特に高い安全機能を有する系統に対して、溢水による影響を及ぼす可能性があることから、溢水源から除外する耐震 B、C クラス機器について基準地震動 Ss で破損しないことを確認する。

2. 評価方法および結果

機器の破損による溢水防止の観点から、基準地震動 Ss による地震力に対して、耐震評価対象となる耐震 B、C クラス機器 (表 1)の構造強度評価を実施し、バウンダリ機能が確保されることを確認する。構造強度評価にあたっては、以下のとおり耐震 S クラス機器と同様の評価手法を用いる。

構造強度評価に係る応答解析は、基準地震動 Ss を用いた動的解析によることとし、機器の応答性状を適切に表現できるモデルを設定する。その上で、当該機器の据付床の水平方向および鉛直方向それぞれの床応答を用いて応答解析を行い、それぞれの応答解析結果を適切に組み合わせる。

なお、減衰定数については、原則として「原子力発電所耐震設計技術指針 JEAG4601 -1991 追補版」に記載の値とし、試験等で妥当性が確認された値も評価に用いる。

応力評価にあたっては、基準地震動 Ss に対する応力発生値と評価基準値を比較することにより行い、評価基準値は「原子力発電所耐震設計技術指針 JEAG4601・補 -1984」(以下、「JEAG」という。)、「発電用原子力施設規格 設計・建設規格 JSME S NC1 -2005」等の規格基準で規定されている値または試験等で妥当性が確認されている値を用いる。ただし、バウンダリ機能の確保の観点から、設備

の実力を反映する場合には規格基準以外の評価基準値の適用も検討する。

評価部位については、JEAG 等の評価対象部位を元に構造上適切に選定した評価部位を選定する。

(1)容器等の耐震評価および結果

評価対象となる耐震 B、C クラスの容器およびポンプ(以下、「容器等」という。)個別の主な解析条件を以下に、評価手法・条件および結果を表 2 に示す。評価結果は評価部位の評価のうち、最も耐震上厳しい評価部位の値を記載しているものである。(解析条件)

- ・設計用地震力:基準地震動 Ss
- ・減衰定数:(水平)1.0%、(鉛直)1.0%
- ・床応答曲線(FRS): ±10%拡幅
- ・応力の組合せ:絶対値和または二乗和平方根(SRSS)

今回適用した評価手法・条件と規格基準上の評価手法・条件を比較するため、耐震 S クラス容器等の代表的な評価手法・条件を表 2 に示す。

今回の耐震 B、C クラス容器等の評価にあたっては、「規格基準以外の評価基準値」など、規格基準と異なる評価手法・条件を適用したものはない。

評価の結果、いずれの容器等においても発生応力が評価基準値を満足していた。

(2)配管の耐震評価および結果

対象となる耐震 B、C クラス配管については、種々の配管があることから、耐震評価にあたり、工事計画認可で考慮されている対象配管の配管条件、相対変位の影響等を確認し(表 3)、対象配管について定ピッチスパン法による評価を実施する。

a. 評価方法

(a) 解析条件

2スパン3点支持モデル(定ピッチスパン法)および3次元はリモデルによる評価のための主要な解析条件を以下に示す。

- ・設計用地震力:基準地震動 Ss
- ・減衰定数:0.5%、1.5%、2.0%、3.0%
- ・床 応 答 曲 線 (FRS): ±10% 拡 幅 、 ピーク 保 持
- ・応力の組合せ:二乗和平方根(SRSS) なお、今回の耐震 B、C クラス配管の Ss 地震力に対する解析条件と耐震 S クラスの解析条件の比較を表 4 に示す。

(b) 評価手順

溢水影響の対象となる耐震 B、C クラス配管の耐震性を確認するための評価の手順を以下に示す。(図 4)

対象配管の整理

溢水影響の対象配管について、「建屋・階層・配管仕様」を 整理する。

定ピッチスパン評価による発生応力算出

「建屋・階層・配管仕様」毎に基準地震動 Ss による定ピッチスパン評価を実施し、評価基準値以内であることを確認する。

3次元はリモデルによる詳細評価

で評価基準値を超える配管部については、基準地震動 Ssによる 3 次元はリモデル評価を実施し、評価基準値以内であることを確認する。なお、評価基準値を超える場合は、改造を実施する。

(c) 評価結果

対象配管の支持間隔における発生応力が許容基準値以内であることを確認した。

表 1 耐震評価対象の耐震 B、C クラス機器(配管、容器)

	対象機器
溢水保有量の	体積制御タンク、非再生熱交換器、封水冷却
多い系統の容	器、原子炉周辺建屋サンプポンプ、原子炉周
器	辺建屋サンプタンク、使用済燃料ピット冷却
	器、使用済燃料ピットポンプ、使用済燃料ピ
	ット脱塩塔、使用済燃料ピットフィルタ、ほ
	う酸補給タンク
耐震 B、C クラ	補助給水系統、原子炉補機冷却水系統、化学
ス配管	体積制御系統、空調用冷水設備系統、1 次系
	洗浄水系統、1次系放射性機器ドレン系統、1
	次系放射性床ドレン系統、消火水系統、主蒸
	気・給水系統、1 次系補給水系統、燃料取替
	用水系統、燃料ピット冷却浄化系統、蒸気発
	生器ブローダウン系統、安全注入系統、1次
	系試料採取系統、液体廃棄物処理系統、固体
	廃棄物処理系統、補助蒸気系統

ただし、廃棄物処理建屋の機器は破損による溢水を考慮することから対象外とする。

表2 容器等の耐震評価手法・条件及び結果整理表(構造強度)

	事		代表的な評価手法·条件				既工認記載内容 「本タン/1、原子炉周辺建屋の床コンク リートに埋設されるものであり耐糖計算を 行うまでもな、耐磨性については十分安 全であるので耐糖計算は省略する。」				JEAG記載の「質点系評価モデル に該当しないため、FEM解析モデ ルにて評価したものであり、適切な 評価手法である。	代表的な評価手法·条件		
	その他 (評価条件(温度、圧 力等)の変更)	相違内容	- 4	なし	なし	なし	既工認と同様の理 由で計算は省略	なし	なし	ねし	な しな ご	-	ない	なし
and a	減衰定数	相違内容	(水平)1.0% (鉛直)1.0%	(水平)1.0% (鉛直)1.0%	(水平)1.0% (鉛直)1.0%	(水平)1.0% (鉛直)1.0%	既工認と同様の理 由で計算は省略	(水平)1.0% (鉛直)1.0%	(水平)1.0% (鉛直)1.0%	(水平)1.0% (鉛直)1.0%	(水平)1.0% (鉛直)1.0%	(水平)1.0% (鉛直)1.0%	(水平)1.0% (鉛直)1.0%	(水平)1.0% (鉛直)1.0%
よの相違		:同じ :異なる	•						0			-		
JEAG等の規格基準の代表的な評価手法・条件との相違	解析モデル	相違内容	(応答解析) モデルなし (応力解析) 1質点モデル	(応答解析) モデルなし (応力解析) 1質点モデル	(応答解析) モデルなし (応力解析) 1質点モデル	(応答解析) モデルなし (応力解析) 1質点モデル	既工認と同様の理由で計算は 省略	(応答解析) モデルなし (応力解析) 1賢点モデル	(応答解析) モデルなし (応力解析) 1賢点モデル	(応答解析) モデルなし (応力解析) 1質点モデル	(応答解析)シェルモデル (応力解析)シェルモデル	(応答解析) モデルなし (応力解析) 1賢点モデル	(応答解析) モデルなし (応力解析) 1賢点モデル	(応答解析) モデルなし (応力解析) 1質点モデル
等の規格		:同じ :異なる	-									-		
JEAG	解析手法(公式等による評価、 スペクトルモーダル解析他)	相違内容	(応答解析)各設備の固有値に基づく応答加速度による評価 (応力解析)公式等による評価	(応答解析)各設備の固有値に基づく応答加速度による評価 (応力解析)公式等による評価	(応答解析)各設備の固有値に基づく応答加速度による評価 での答加速度による評価 (応力解析)公式等による評価	(応答解析)各設備の固有値に基づく応答加速度による評価 (応力解析)公式等による評価	既工認と同様の理由で計算は省 略	(応答解析)各設備の固有値に基づく応答加速度による評価 (応力解析)公式等による評価	(応答解析) 各設備の固有値に基づく応答加速度による評価 (応力解析) 公式等による評価	(応答解析)各設備の固有値に基づく応答加速度による評価 (応力解析)公式等による評価	(応答解析)スペクトルモーダル解析 析 (応力解析)スペクトルモーダル解析	(応答解析)各設備の固有値に基づく応答加速度による評価 (応力解析)公式等による評価	(応答解析)各設備の固有値に基づく応答加速度による評価 (応力解析)公式等による評価	(応答解析) 各設備の固有値に基づく応答加速度による評価 (応力解析) 公式等による評価
	解本ス	:同じ :異なる								,				
	評価基準値	МРа	-	334	210	267	ンクリートに	400	210	210	261	-	153	160
	発生値	MPa	•	165	41	51	.子炉建屋)の床 ョしている。	722	180	54	99	-	17	6
	応力分類		-	一次応力	引張応力	組合セー次応力	本タンクは、原子炉周辺建屋(原子炉建屋)の床コンクリートに埋設されているため、耐震性を有している。	仁迎蟄 5	仁迎蟄 5	日張応力	組合せ応力	-	日張応力	せん断応力
	評価部位		胴板 支持脚 基礎ボルト	胴板	基礎ボルト	弹岨	本タンクは、原子 埋設されている	4化単独音	4化単発音	4化単独査	支持構造物	基礎ボルト取付ボルト	基礎ボルト	基礎ボルト
	設備名称		耐震8クラス 容器	非再生冷却器	封水冷却器	体積制御タンク	原子炉周辺建屋サンプタンク	使用済燃料ビット冷却器	使用済燃料ビット脱塩塔	使用済燃料ピットフィルタ	ほう酸補給タンク	耐震8クラス ポンプ	原子炉周辺建屋サンブポンプ	使用済燃料ビットポンプ
	区分					- K¢	器・ タン	4					ポンプ	

溢水対象配管の配管条件・評価方法 表3

			配管の条件		建設	
外統允	材質	温度 150 超	7 × 1 × 1 × 1 × 1 × 1 × 1	喜電	工認時	備考
		口径 48 以上	生むらが	相対変位	評価方法	
補助給水系統	SNS	-		-	ı	
原子炉補機冷却水系統	CS, SUS	-		-	ı	
化学体積制御系統	SUS	1		-	定ピッチ	
空調用冷水設備系統	S	1		*2	1	
1 次系洗浄水系統	SNS	-		-	ı	
1次系放射性機器ドレン系統	SNS	-		-	定ピッチ	
1次系放射性床ドレン系統	SNS	-		-	ı	
消火水系統	S	-		Z *	ı	
主蒸気・主給水系統	SO	٠.		-	-	
1 次系補給水系統	SNS	-		-	-	
燃料取替用水系統	SNS	-		-	定ピッチ	
燃料ピット冷却浄化系統	SNS	-		-	定ピッチ	
蒸気発生器ブローダウン系統	CS, SUS	-		Z _*	1	
安全注入系統	SNS	-		-	定ピッチ	
1 次系試料採取系統	SNS	-		-	定ピッチ	
液体廃棄物処理系統	SNS	-		-	定ピッチ	
固体廃棄物処理系統	SNS	-		-	定ピッチ	
補助蒸気系統	SUS SUS	*		Z*	ı	
		+				

^{*1:}建設時、熱の影響が大きい配管は、定ピッチスパンにて耐震設計を行い、3次元はりモデルにて熱影響評価を行っており、建設時から支持スパンが変更されていないため、建設時の熱条件を考慮する。 *2:配管が異なる建屋(原子炉周辺建屋および制御建屋)間の相対変位を考慮する。

表 4 耐震 B、C クラス配管における解析条件

溢水対象の耐震 B、C クラス配管の Ss 地震力に対する解析における条件を以下に示す。なお、参考として耐震 S クラス配管の解析条件を合わせて示す。

, , , , , , , , , , , , , , , , , , , ,	B、C クラス低温配管 (溢水波及影響評価)	【参考】 S クラス低温配管 (設計評価)	備考
手法	定ピッチスパン法	定ピッチスパン法(*1)	
地震波	Ss ・NS・EW 包絡 ・±10%拡幅 ・ピーク保持	Ss 同左	
荷重の組合せ	二乗和平方根(SRSS)	同 左	
減衰定数	0.5、1.5、2.0、3.0% (*2)	同 左	
許容応力状態	As	同 左	
評価項目 ・応力 ・振動数	×		
地震時の 相対変位の 考慮(*3)	要	要	

*1:150 を超え、4B以上の高温配管は3次元はリモデル解析

*2: JEAG4601 -1991 および試験等で妥当性が確認された値

*3: 熱応力については建設時の条件を確認

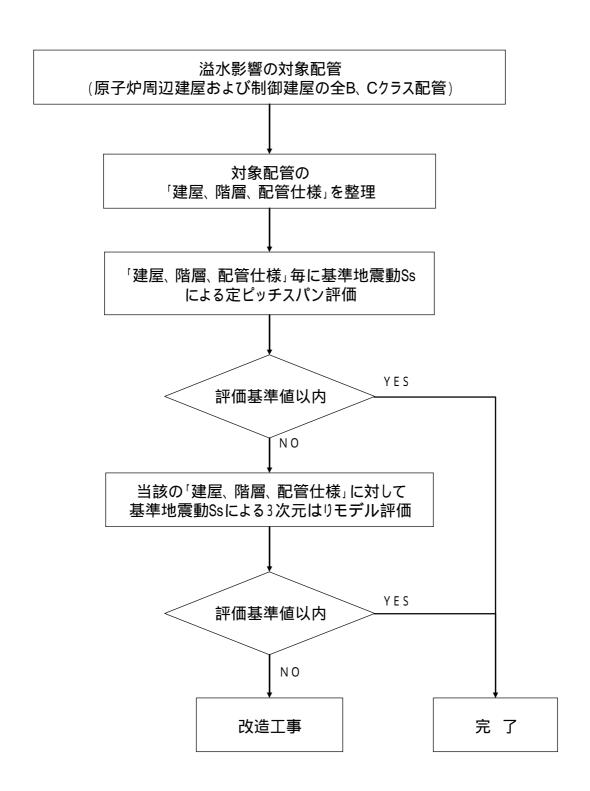


図1 対象配管の評価フロー

地震時に溢水源として想定する機器リスト

【地震に起因する溢水】 流体を内包する機器(配管、容器)のうち、基準地震動による地震力によって破損が生じるとされる機器(耐震重要度分類B,Cクラス機器) について、破損を想定する。 ただし、B,Cクラス機器であっても、基準地震動による地震力に対して耐震性が確認されているものについては、漏水を考慮しない。 溢水量は、系統の全保有水量が漏えいするものとした。

建屋	フロア	溢水源	No.	溢水量	備考
		樹脂タンク	(1)	(m ³) 0.23	5
	EL.39.0III	団間ランク 使用済燃料ピットスロッシング	(2)	22.62	
		冷却材混床式脱塩塔	(2)	22.02	
3号機	El 22 6m	冷却材陽イオン脱塩塔			
原子炉	LL.33.0III		(3)	48.07	
周辺建屋		冷却材フィルタ			
		1次系薬品タンク	(4)	0.02	
	EL.17.1m	日の影響を	(5)	1.5	
	El 20 0m	樹脂タンク	(1)	0.23	
		団間ラフラ 使用済燃料ピットスロッシング	(2)	22.62	
	EL.33.0III		(2)	22.02	
4号機		冷却材陽イオン脱塩塔	1		
原子炉	EL.26.0m	冷却材脱塩塔入口フィルタ	(3)	48.07	
周辺建屋		冷却材フィルタ			
		1次系薬品タンク	(4)	0.02	
	EL.17.1m	T 人が栄加タング	(4)	0.02 1.5	
		放射線管理室冷却ユニット	(6)	57.4	
制御建屋	EL.26.1m	放射線管理室冷却ユーット 出入管理室温水タンク	(7)	11.4	
		山八昌珪至温ホタンケ ほう酸回収装置混床式脱塩塔	(')		
		ほう酸回収装置脱塩塔フィルタ	-	1215.3	
		はつ酸凹収表量脱塩培ノイルタ 廃液蒸留水脱塩塔	 		1
		廃液フィルタ	-	783.9	
	EL.26.0m	格納容器雰囲気ガス試料冷却器			
		除湿装置(廃ガス冷却器)	-	386.5	
		ガス圧縮装置		(783.9)	
		除湿装置	-	(386.5)	
		廃液蒸発装置中和剤注入装置か性ソーダ計量タンク		,	
		廃液蒸発装置中和剤注入装置	-	(783.9)	
		院/从杰元农苴1 ³¹ 4月71八农苴		(1215.3)	
		Aほう酸回収装置	-		・水密扉、逆止弁、堰を設置し、原子炉周辺建 屋と隔離している
		A廃液蒸発装置		(783.9)	
	EL.17.5m	乾燥造粒装置	-	(386.5)	・溢水量は、破損した場合に漏えいする可能性
		DIT 2 砂原収集	_	(1215.3)	のある系統保有水量を、各設備毎に示したもの である。 (建屋内で重複している場合は()で示
		Bほう酸回収装置 	-	396.5	である。(建産的で重複している場合は()でか
		D应达艾森林里		(783.9)	
		B廃液蒸発装置	-	(396.5)	以下の通り、各系統保有水量を溢水量とし
		冷却材貯蔵タンク		(4045.0)	た。
廃棄物		ほう酸回収装置給水ポンプ	-	(1215.3)	 化学体積制御系統(ほう酸回収ライン):
処理建屋		廃液貯蔵タンク			1215.3m ³
		廃液蒸留水タンク			廃棄物処理系統:783.9m ³
		廃液給水ポンプ	_	(783.9)	原子炉補機冷却水系統(3号機):386.5m ³
	EL.10.0m	廃液蒸留水ポンプ	-	(103.9)	原子炉補機冷却水系統(4号機):396.5m ³
	LL. IU.UIII	膜分離活性汚泥処理装置			1次系補給水系統:815.0m³
		使用済樹脂貯蔵タンク			1次系洗浄水系統:13.5m³
		1 次系純水タンク	_	815.0	補助蒸気系統(復水ライン): 24.0m ³
		1 次系補給水ポンプ	ļ		その他配管:924.9m3
		洗たく設備	-	13.5	 ・廃棄物処理建屋の合計溢水量は4559.6m ³
		維固体焼却設備	-	(783.9)	
		洗浄排水タンク	1		
		強酸ドレンタンク	_	(783.9)	
		強酸ドレンタンク中和装置か性ソーダ計量タンク			
	.	洗浄排水ポンプ	ļ		
	EL.4.9m	補助蒸気ドレンタンク	-	24.0	
		補助蒸気復水モニタ冷却器	-	(386.5)	
			ļ	(24.0)	
		強酸ドレンポンプ	-	(783.9)	
		arm date	<u> </u>	(386.5)	
	-	配管	-	924.9	

廃棄物処理建屋から原子炉周辺建屋への流入経路については、堰や水密扉、床ドレンの逆流防止弁を設置していることから、溢水源として評価対象としない

使用済燃料ピットのスロッシングによる溢水量評価

1.はじめに

基準地震動 Ss による使用済燃料ピットのスロッシング解析を行い, ピットからの溢水量を評価する。

2. 基準地震動 Ss による溢水量の推定

2.1 溢水量の解析方法

使用済燃料ピットのあるフロアレベルの燃料取扱建屋をモデル化範囲とし、 スロッシングによる溢水量を保守的に評価するために、使用済燃料ピット,燃料取替用キャナル,キャスクピット,燃料検査ピットの全てが水張りされた状態とした3次元流動解析により溢水量を算定する。

燃料取扱建屋(E.L.33.6m)の使用済燃料ピット周辺の概要を図 -1 に示す。

解析条件

モデル化範囲	使用済燃料ピットのあるフロアレベル全体(図 -1 参照)
境界条件	シャッター位置およびピット室への出入口からは水が流 出するものとする。 また、上部は開放とし、他は壁による境界を設定。
水位	EL.33.21m
評価用地震波	燃料取扱建屋 EL.33.6m の波を使用 スペクトルベース(1波)と断層モデルベース(2波) に対し、EW + UD と NS + UD の 2 方向で評価する。
解析コード	FLOW - 3D(流体解析ソフトウェア) 自由表面(および2流体界面)の大変形を伴う複雑な3 次元流動現象を精度よく計算することを特徴としている。 一般産業施設の主要な解析実績としては、液体燃料やLNG タンクのスロッシング解析、インクジェット解析、鋳造 湯流れ凝固解析などが挙げられる。
その他	使用済燃料ラックは考慮せず、ピット内の水が全て揺動するとした。 また、ピット周りに設置されているフェンスは考慮しない。

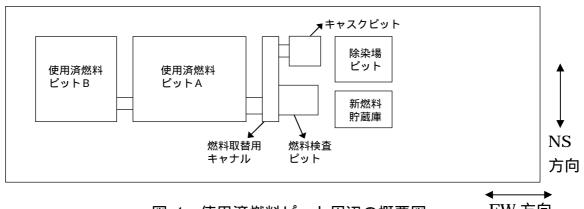


図 -1 使用済燃料ピット周辺の概要図

EW 方向

2.2 溢水量の推定結果

上記 2.1.1 により算定した基準地震動 Ss における使用済燃料ピットのスロ ッシングによる最大溢水量を表 -1,使用済燃料ピット水位を表 -2に示す。

表 -1 スロッシングによる最大溢水量

NS 方向地震	22.62m ³
EW 方向地震	17.57m ³

表 2 溢水時の使用済燃料ピット水位

初期ピット水位	12.06m (E.L.33.21)
NS 方向地震後のピット水位	11.98m (E.L.33.13)
EW 方向地震後のピット水位	11.99m (E.L.33.14)

溢水経路、溢水水位および機能喪失高さの考え方

1. はじめに

溢水による影響評価を実施するために必要となる、溢水経路、溢水水位および機能喪失高さの設定の考え方を示す。

2.溢水経路

溢水経路の設定にあたっては、溢水防護区画内漏えいと溢水防護区画外漏 えいを想定して設定する。

(1)溢水防護区画内漏えいでの溢水経路

溢水防護区画内漏えいでの溢水経路の評価を行う場合、防護区画内の水位が最も高くなるよう、当該溢水区画から他区画への流出がないように溢水経路を設定している。

a. 床ドレン

床ドレン配管が設置され他の区画とつながっている場合であって も、他の区画への流出は想定していない。

b. 床面開口部及び床貫通部

評価対象区画床面において、他区画への流出を期待するものは、明らかに流出が期待できることを定量的に確認できる階段あるいは機器ハッチとしている。

c. 壁貫通部

評価対象区画の境界壁の貫通部が溢水による水位より低い位置にある場合であっても、その貫通部からの流出は考慮していない。

d. 扉

評価対象区画に扉が設置されている場合であっても、当該扉から隣 室への流出は考慮していない。

e.排水設備

評価対象区画に排水設備が設置されている場合であっても、当該区 画の排水は考慮していない。

(2)溢水防護区画外漏えいでの溢水経路

溢水防護区画外漏えいでの溢水経路の評価を行う場合、防護対象機器の存在する溢水防護区画の水位が最も高くなるように溢水経路を設定している。

a. 床ドレン

評価対象区画の床ドレン配管が他の区画とつながっている場合は、 水位差による流入量を考慮している。

評価対象区画内に設置されているドレン配管に逆止弁を設置している場合は、その効果を考慮している。

b. 天井面開口部及び貫通部

評価対象区画の天井面に開口部又は貫通部がある場合は、上部の区画で発生した溢水量の全量が流入するものとしている。ただし、開口部又は貫通部に流出防止処置を施している場合は、評価対象区画への流入は考慮していない。

c. 壁貫通部

評価対象区画の境界壁の貫通部が溢水による水位より低い位置にある場合は、その貫通部からの流入を考慮している。

d. 扉

評価対象区画に扉が設置されている場合は、水位差による流入量を 考慮している。

水密扉については、水圧による水密性の確保でき、その水位に耐えられる強度を有しており、流入を考慮していない。

e.堰

溢水が発生している区画に堰が設置されている場合は、他に流出経路が存在しない場合は、当該区画で発生した溢水は堰の高さまで蓄積されるものとしている。

評価対象区画によっては、溢水量から得られる水位の算出において、 保守的な評価となるよう堰の有無にかかわらず、堰があるものとして 滞留面積を小さくすることで評価用の水位を高く設定している。

f.排水設備

評価対象区画に排水設備が設置されている場合であっても、当該区 画の排水は考慮していない。

以上より、各フロアの区画における、溢水量及び滞留面積を算出する。 なお、上層階から階段あるいは機器ハッチを経由して下階へ伝播する場合は、 上層階の溢水量を積算し、その溢水量が当該フロアに滞留するものとする。

3. 溢水水位

影響評価に用いる溢水水位の算定は、溢水経路上の評価対象区画の全てに対して行う。

溢水水位:Hは、下式に基づき算出する。

H = Q/A

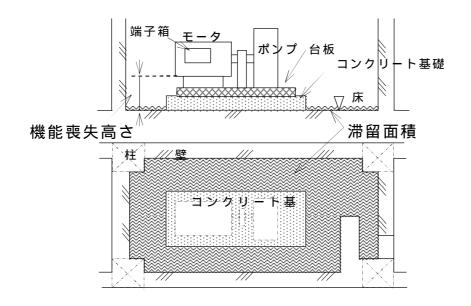
Q: 流入量(m³)

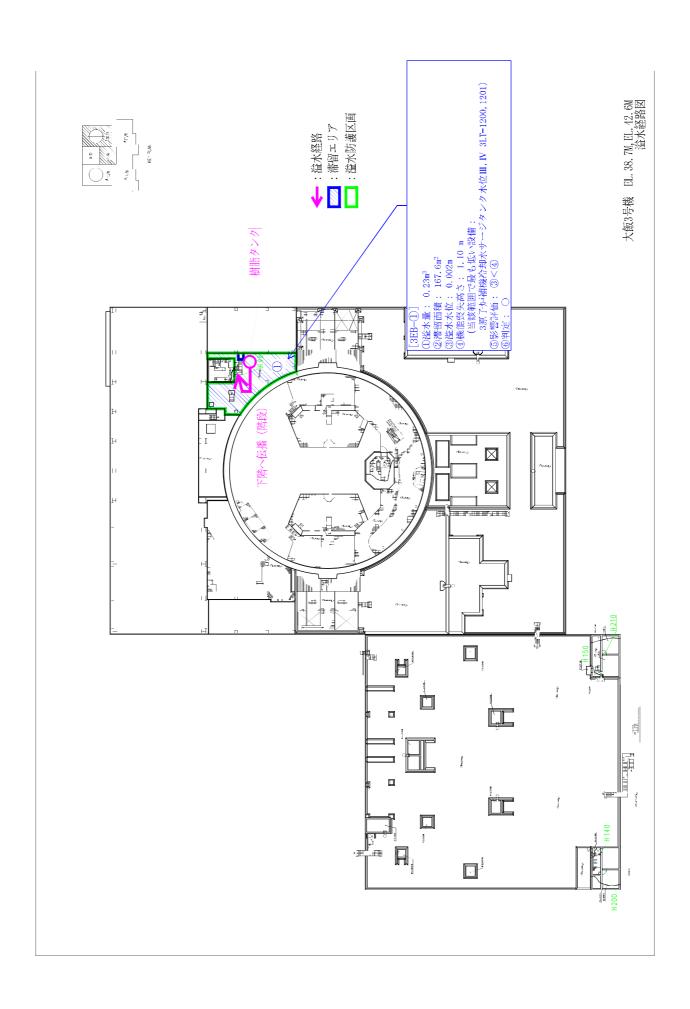
A:滞留面積(m³)

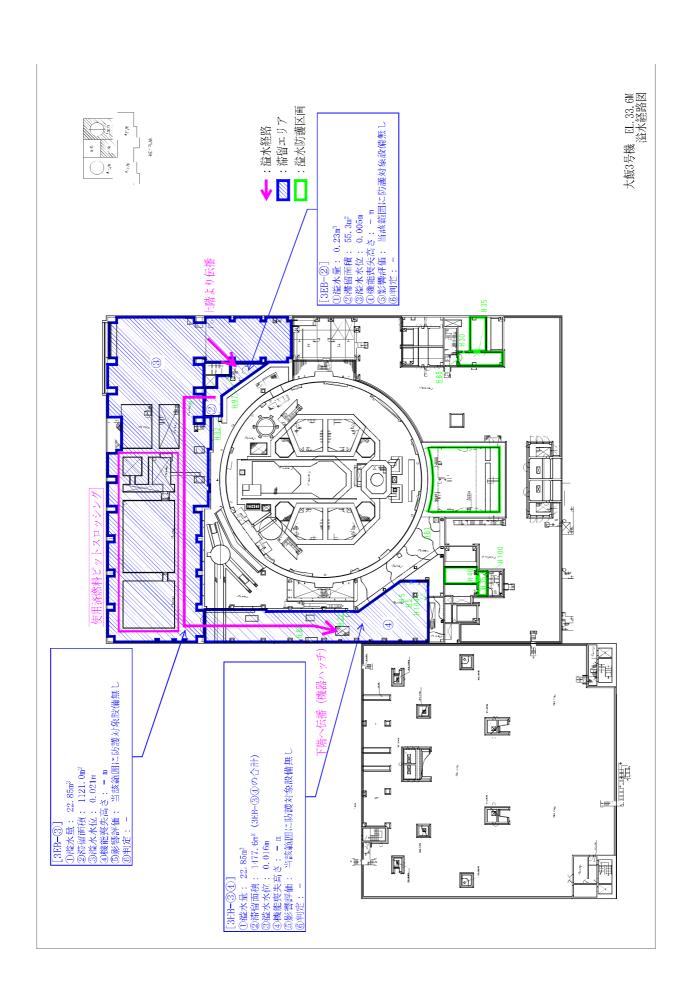
滞留面積は、コンクリート基礎等の範囲を除く有効面積を滞留面積として評価する。(図1)。

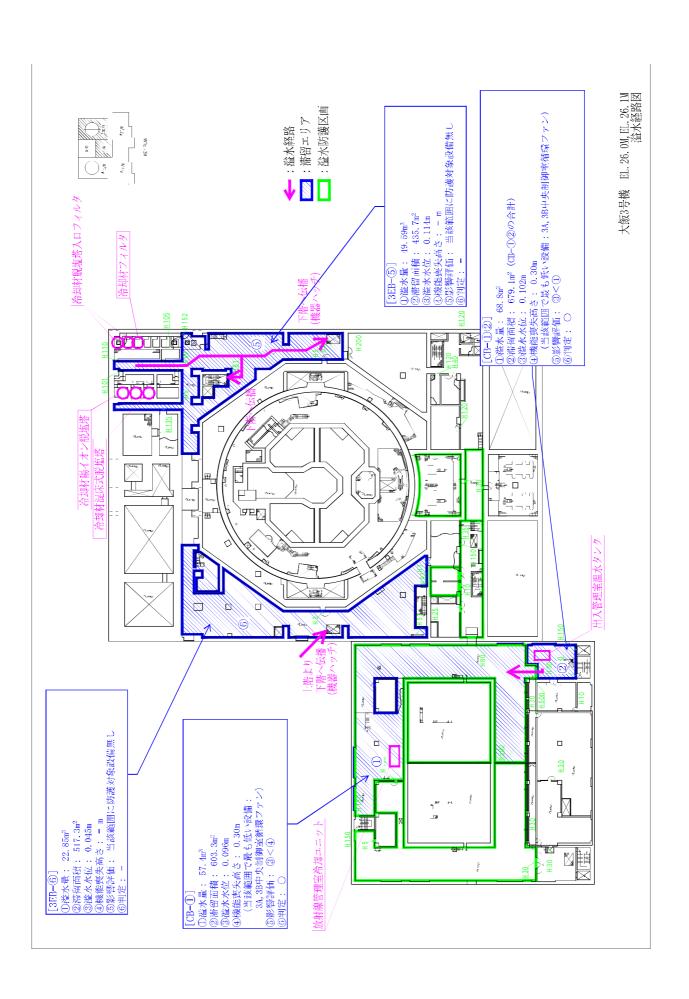
4.機能喪失高さ

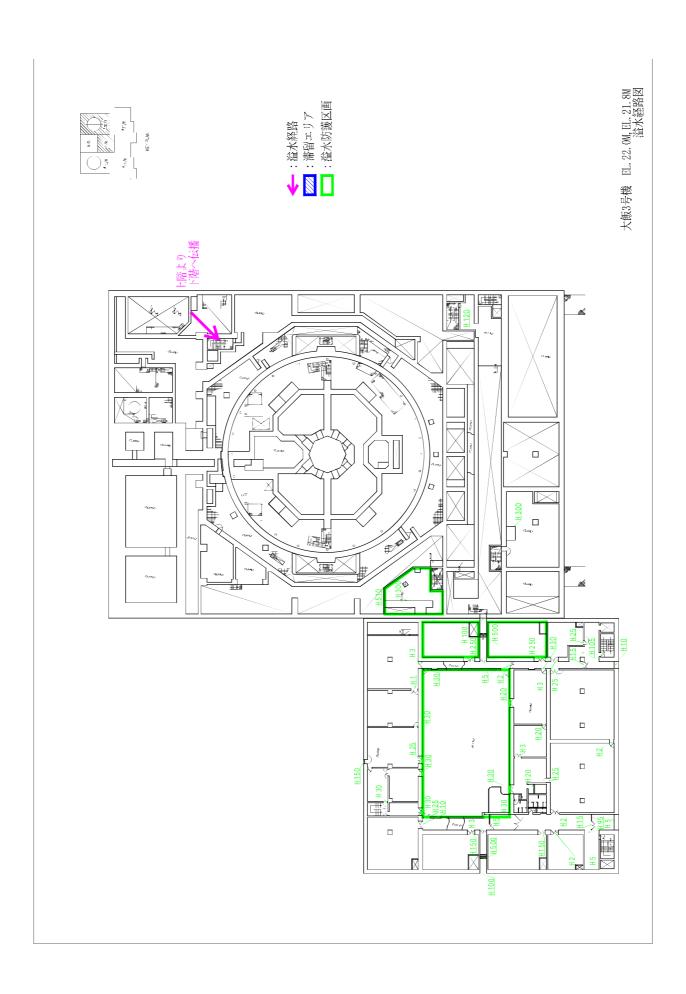
滞留エリア毎に、最も低い位置にある防護対象設備の設置高さを、機能喪失 高さとする。(図1)。

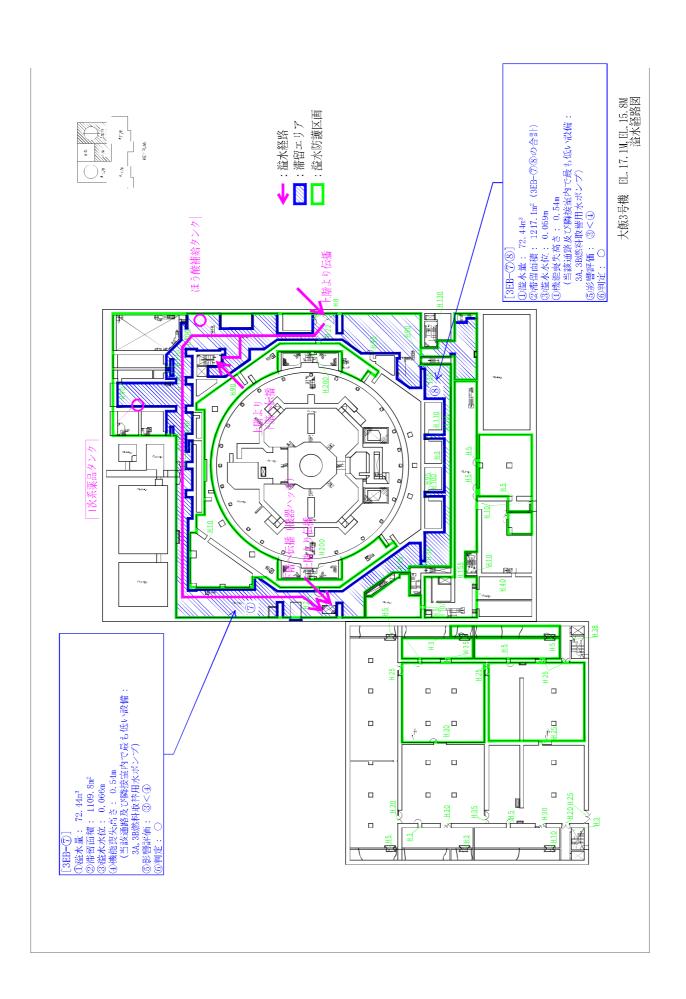


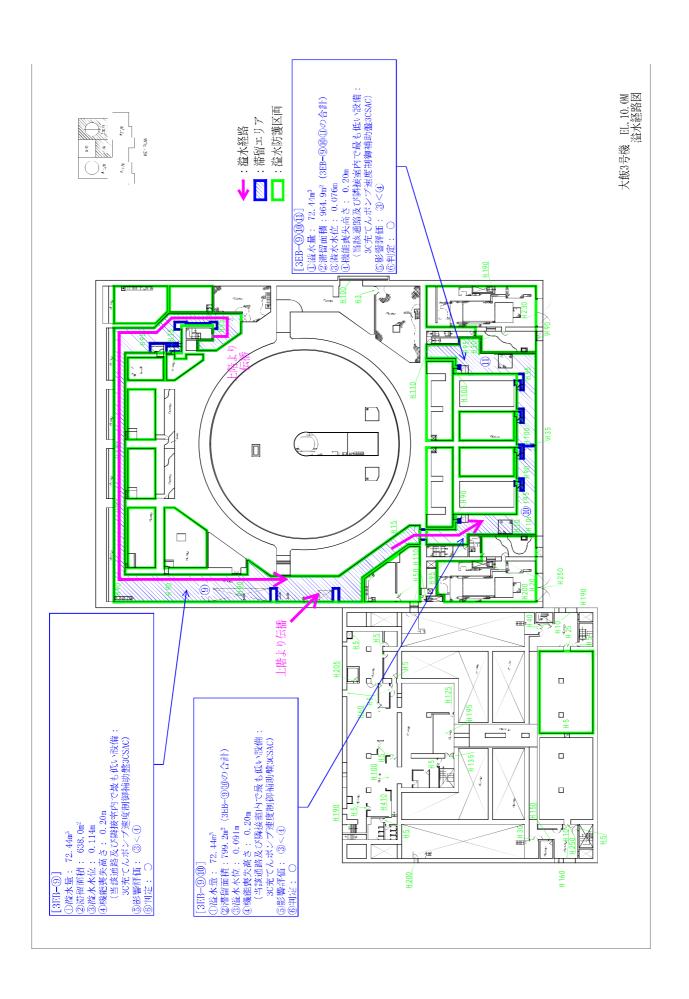

図1 機能喪失高さと滞留面積の考え方

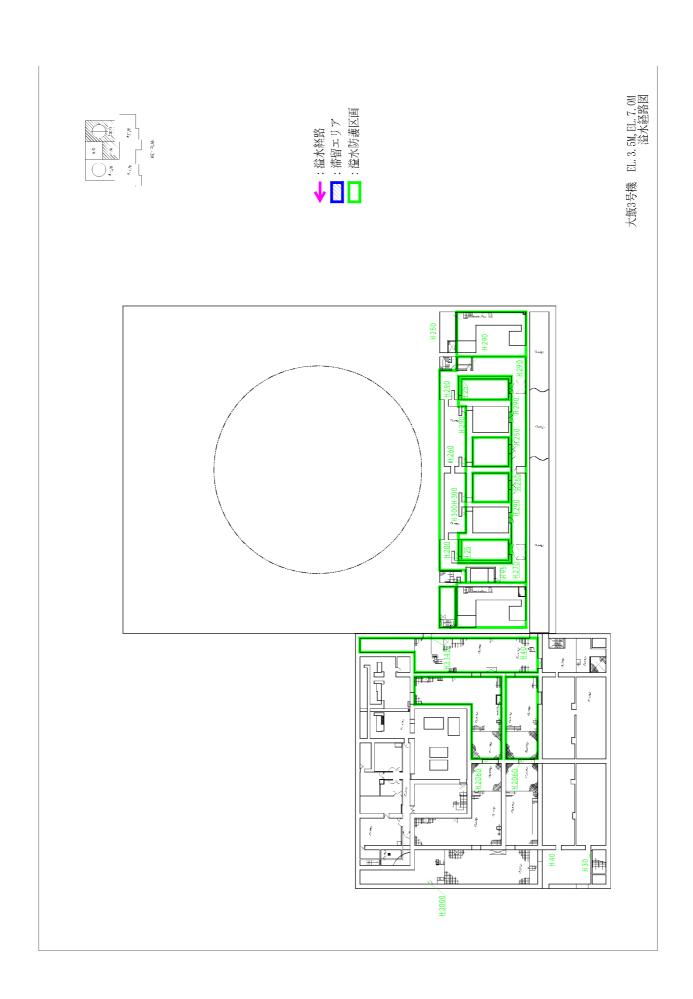

國献	区域区分	EL. [m]	光田田田子の書書	順 光道 []	新 三 二 二 二	放头 [m]	防護対象設備	機能喪失高さ (EL.[m])	機能喪失高さ (床上[m])	影響評価	加加
		39.0	3EB -	0.23 1	167.6	0.002	3原子炉補機冷却水サージタンク水位 , (3LT -1200,1201)	40.1	1.10	٧	
			3EB -	0.23 1	55.3	0.005				防護対象設備 無し	
		33.6	3EB -	22.85 2	1121.0	0.021	ı			防護対象設備 無し	
			3EB -	22.85 2	1477.6	0.016	-		-	防護対象設備 無し	
3-0森	草丛	0 30	3EB -	49.59 3	435.7	0.114				防護対象設備 無し	
周辺建屋	왕 - - - - - - - - - - - - - - - - - - -	70.07	3EB -	22.85 2	517.3	0.045	,	•	-	防護対象設備 無し	
		17.1	3EB -	72.44 4	1109.8	0.066	3A,3B燃料取替用水ポンプ	17.64		>	
		1.,	3EB -	72.44 4	1247.1	0.059	3A, 3B燃料取替用水ポンプ	17.64	0.54	>	
			3EB -	72.44 4	638.0	0.114		10.20	0.20	٧	
		10.0	3EB -	72.44 4	799.2	0.091	3C充てんポンプ速度制御補助盤 (3CSAC)	10.20	0.20	v	
			3EB -	72.44 4	964.9	0.076	3C充てんポンプ速度制御補助盤 (3CSAC)	10.20	0.20	v	
制	区域区分	EL.[m]	新聞エリア 番号	就水槽 [m³]	上。 「m」	就 [m]	防護対象設備	機能喪失高さ (EL.[m])	機能喪失高さ (床上[m])	影響評価	判定
		39.0	4EB -	0.23 1	167.6	0.002	4原子炉補機冷却水サージタンク水位 , (4LT 1200,1201)	40.0	1.00	>	
			4EB -	0.23 1	55.3	0.005			-	防護対象設備 無し	
		33.6	4EB -	22.85 2	1121.0	0.021	ı			的護対象設備 無し	
			4EB -	22.85 2	1480.1	0.016				防護対象設備 無し	
载 미		0 30	4EB -	49.59 3	405.5	0.123	ı			的護対象設備 無し	
40万 河子を 17世 17世 17世 17世 17世 17世 17世 17世 17世 17世	管理区域	0.07	4EB -	22.85 2	520.2	0.044			-	防護対象設備 無し	
国际连座		17.1	4EB -	72.44 4	1142.0	0.064		17.65	0.55	v	
			4EB -	72.44 4	12/9.3	0.057		17.65	0.55	v v	
		10.0	4EB -	72.44 4	754.1	0.097	4C充てんポンプ速度制御補助盤 (4CSAC)	10.20	0.20	~	
			4EB -	72.44 4	9.006	0.081	4C充てんポンプ速度制御補助盤 (4CSAC)	10.20	0.20	v	
		2	4EB -	72.44 4	291.9	0.249	44,48高	3.85	0.35	>	
		?	4EB -	72.44 4	602.1	0.121	4A, 4B高圧注入ポンプ	3.85	0.35	v	
制	区域区分	EL. [m]	米四十四米	就 [™3]	推回匯 [m]	就 [m]	防護対象設備	機能喪失高さ(日・「四」)	機能喪失高さ(床 ト[加])	1 単二単二	工
			1		000		2、0日中世紀中午間117	7 7 30	7	,	Ī

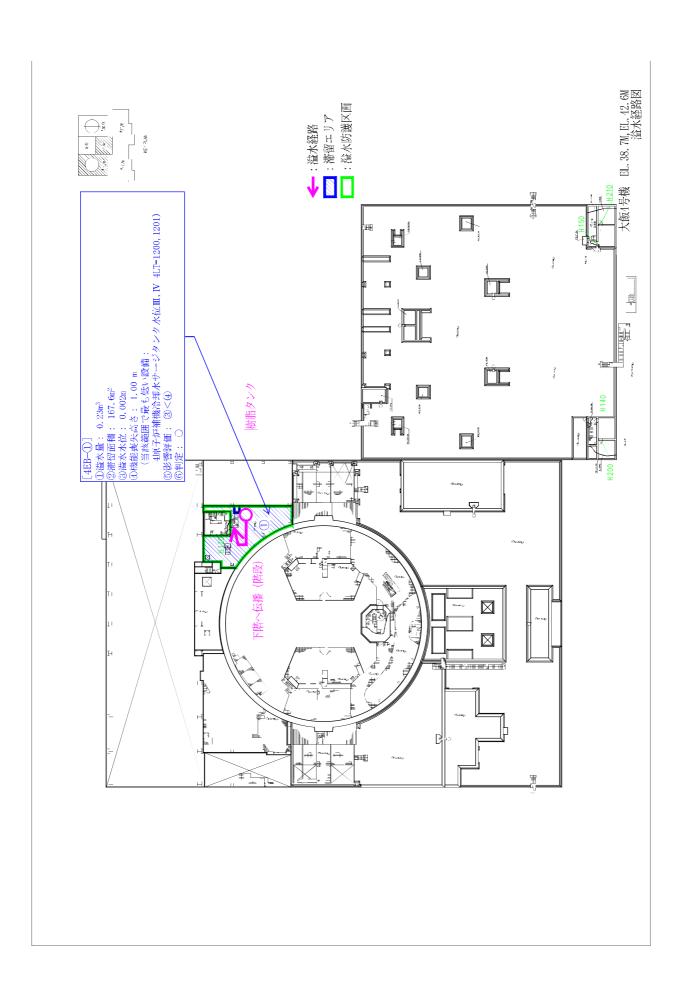

[溢水量内訳 (番号は溢水源リストに対応)] 1: (1) 2: (11+(2) 3: (31+(4)+(5) 4: (1)+(2)+(3)+(4)+(5) 5: (6) 6: (6)+(7)

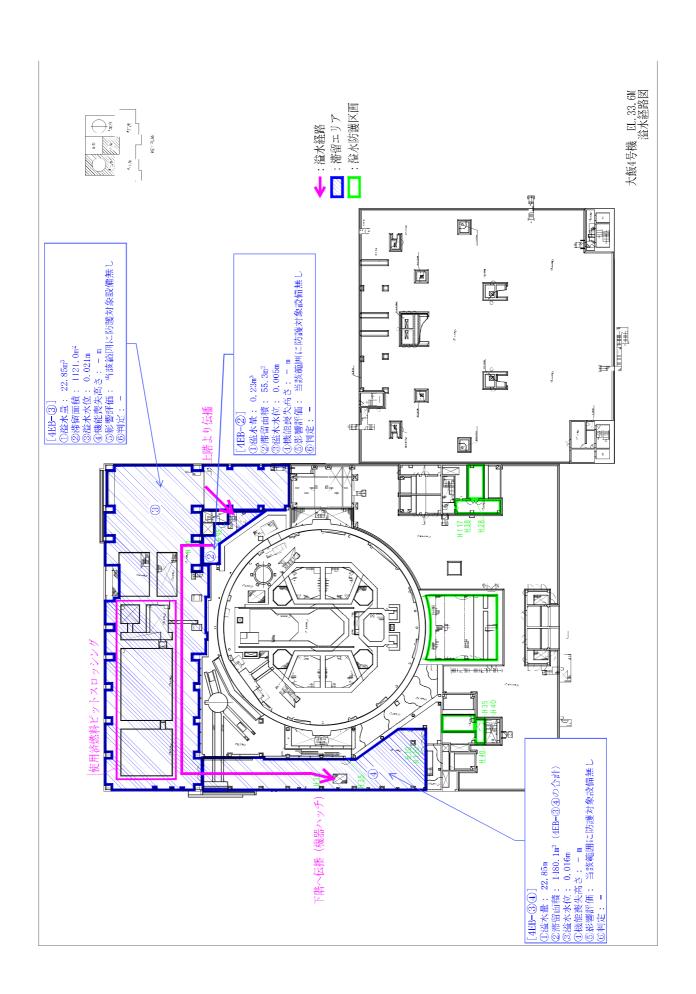

非管理区域 26.1

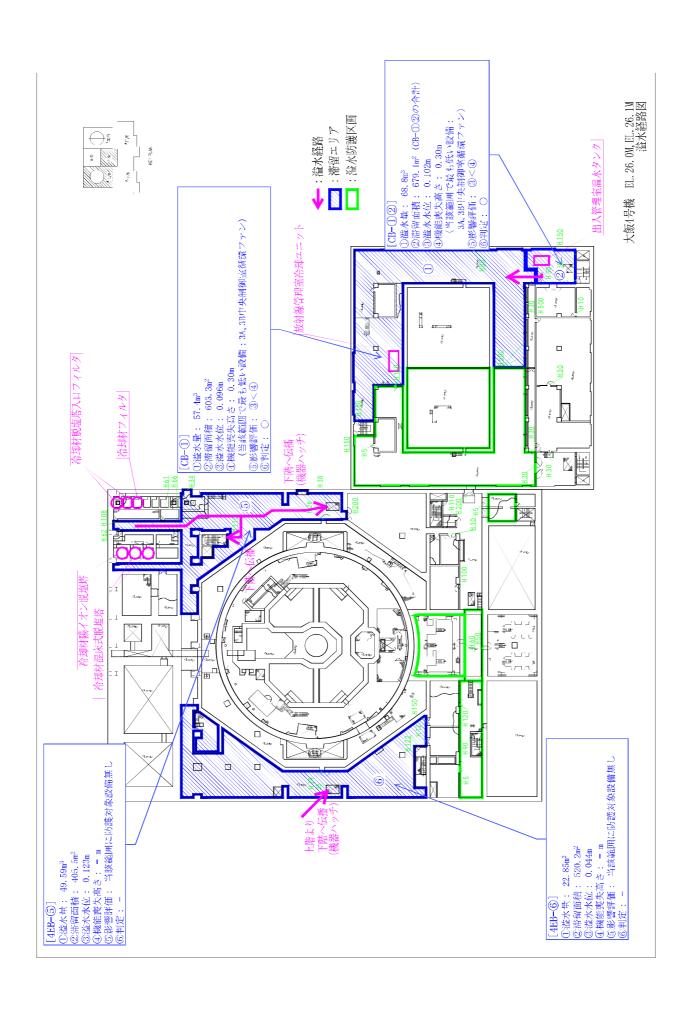

制御建屋

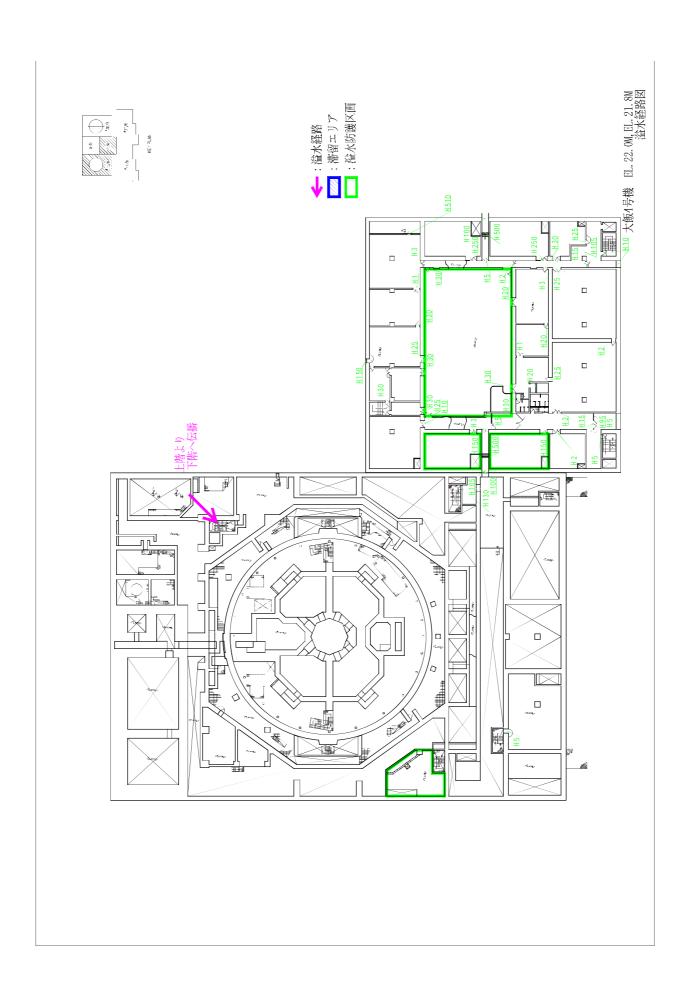


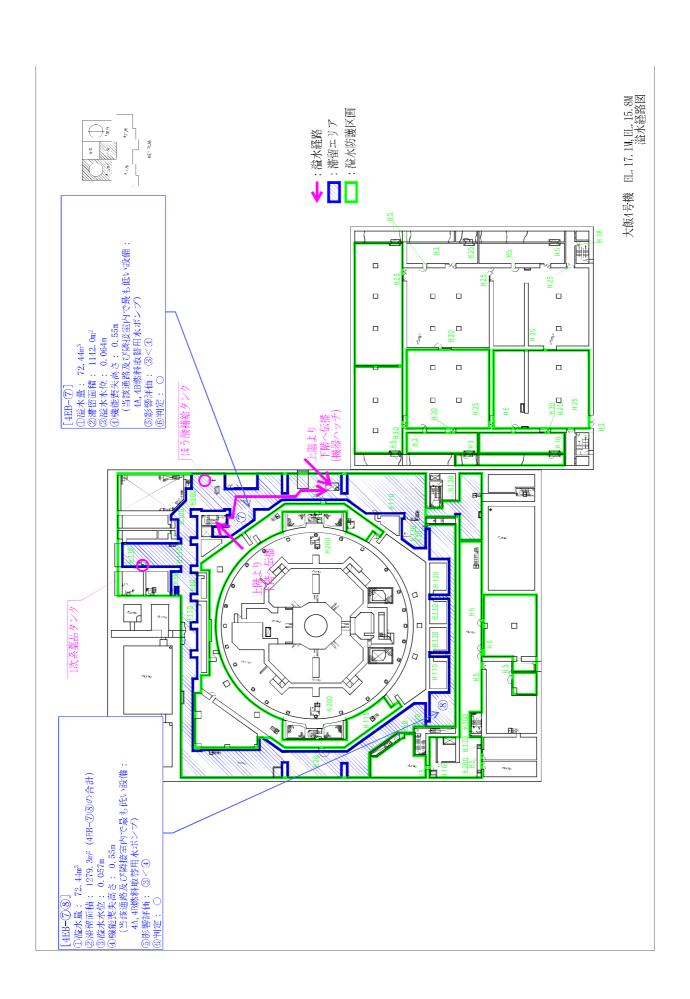


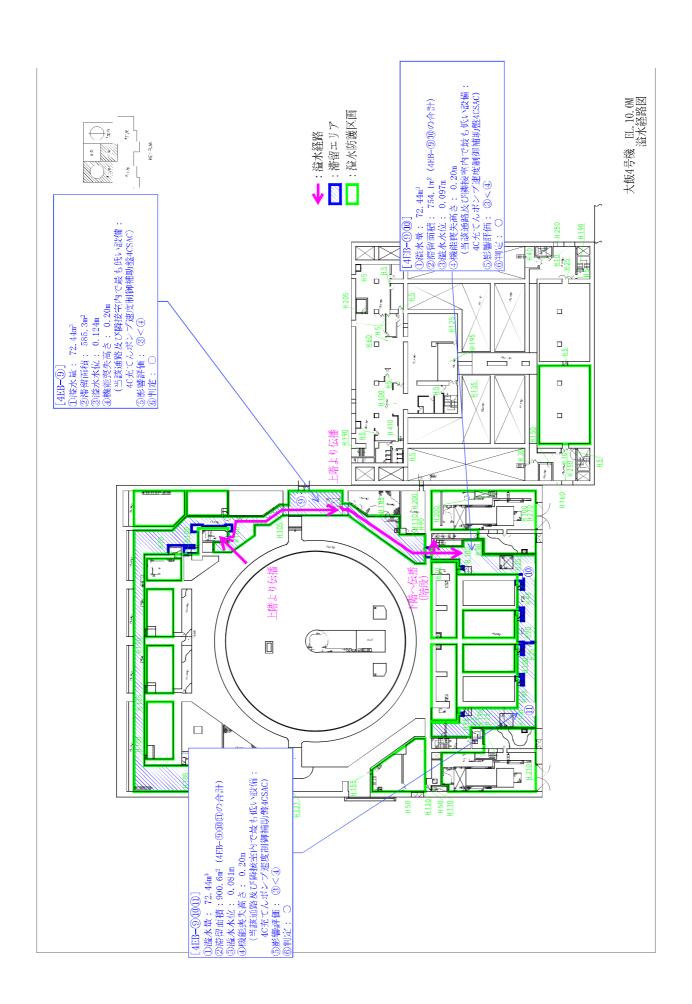


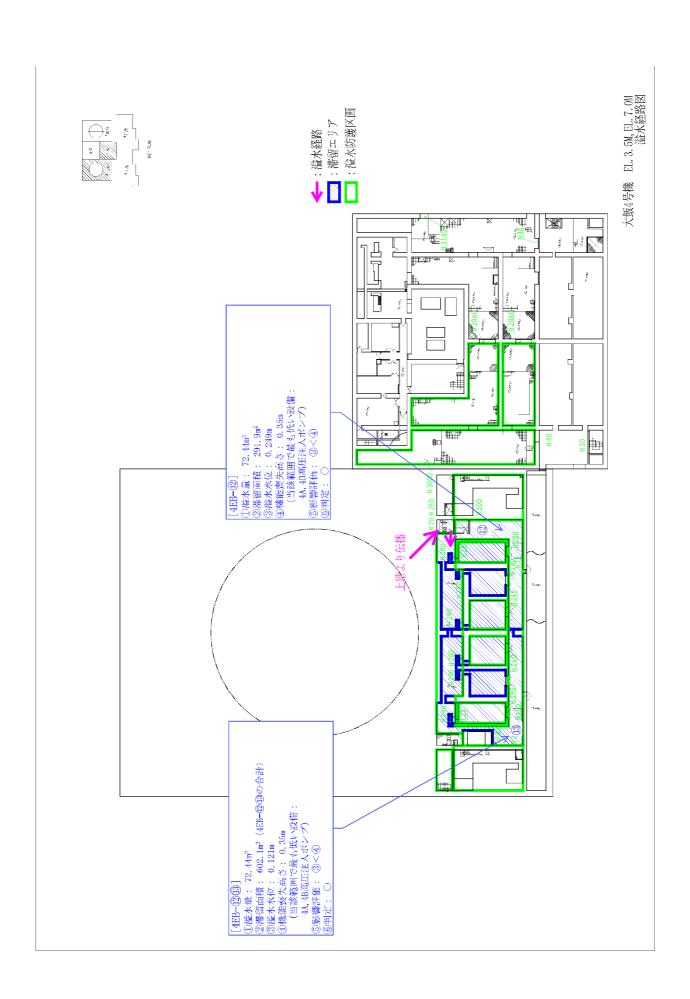


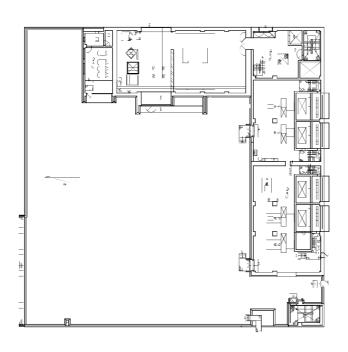


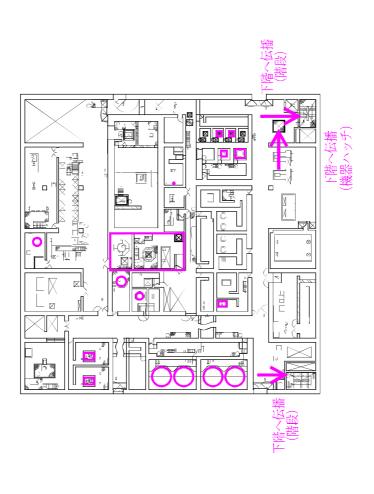


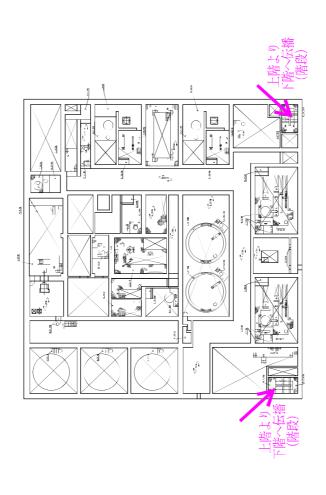


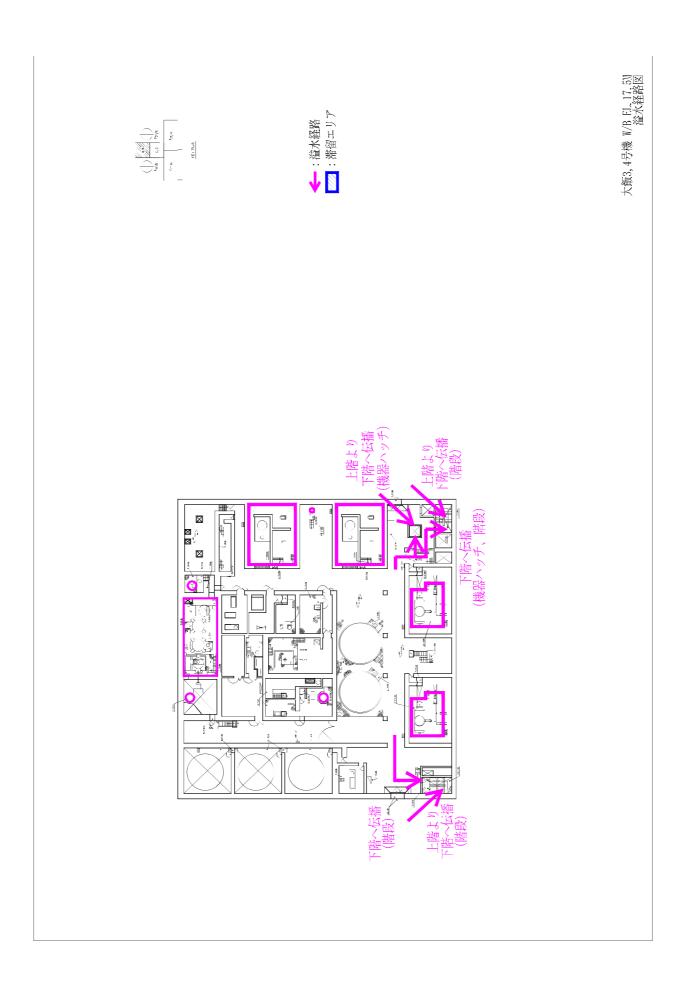


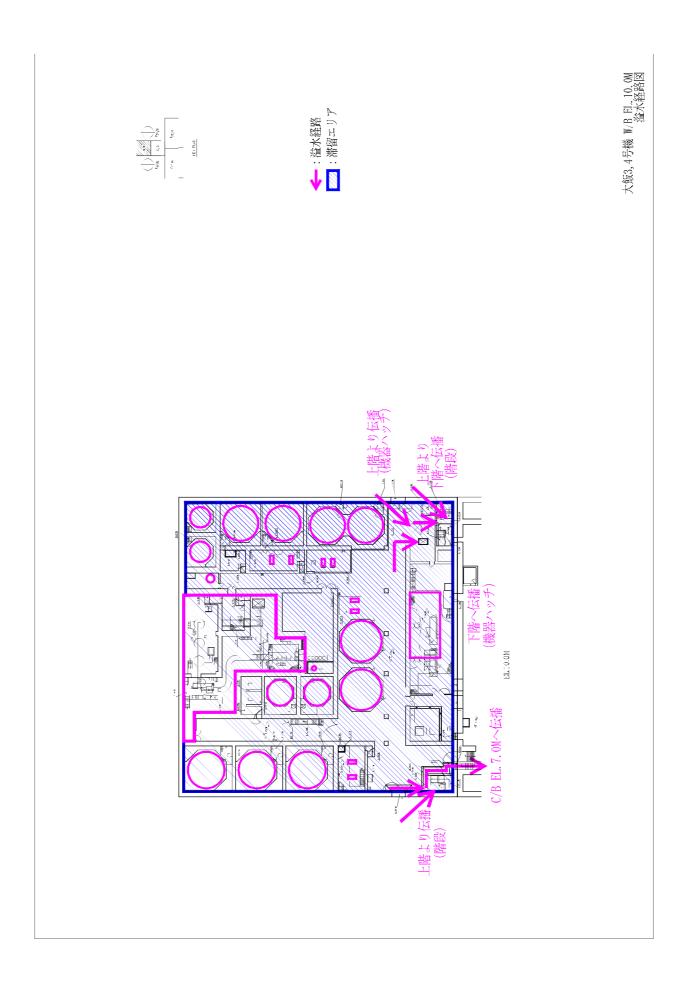




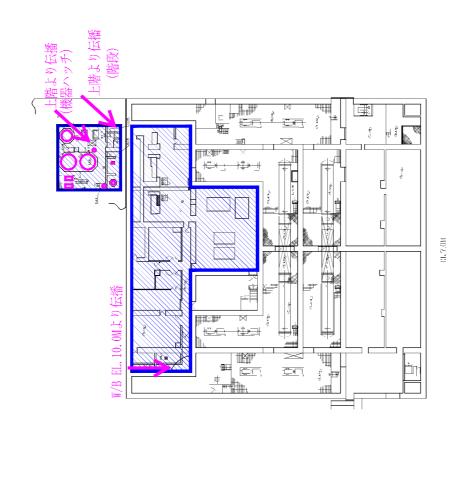












海水ポンプエリアの溢水影響評価

1.はじめに

海水ポンプエリアには塵芥排出用トラフを経由して、取水路に排出されることから、溢水が滞留し続けることはないが、溢水の影響評価にあたっては、海水ポンプエリアにある低エネルギー配管の想定破損による溢水、消火栓からの溢水および地震時の C クラス配管からの溢水を想定する。

2.溢水量

(1)地震時の C クラス配管からの溢水量

	溢水量 (m³)
淡水系統	169
スクリーン洗浄水系統	1.5
海水電解装置系統	4
海水淡水化装置系統	12
合計	186.5

(2)消火栓からの溢水量を算出

消火栓からの溢水量を下記のとおり算出した。

· 130ℓ/min/個×3時間×2個 = 46.8m³

(3)低エネルギー配管の想定破損による溢水量を算出

本ガイドに従い、単一機器の破損想定による溢水量は、C クラス配管のうち、 溢水量が最も多い淡水系統の溢水量 169m³とした。

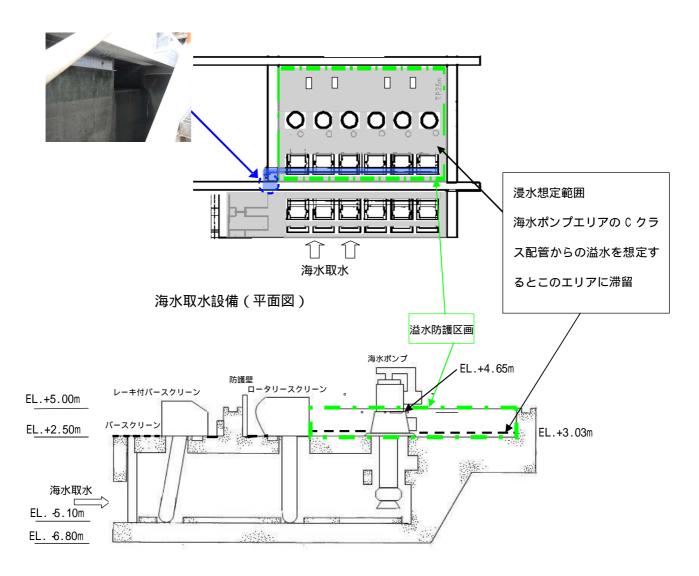
以上より、地震時のCクラス配管からの溢水量は、消火栓からの溢水量および低エネルギー配管の想定破損による溢水量よりも大きいため、地震時におけるCクラス配管からの溢水量で影響評価を行った。

3.溢水水位

海水ポンプエリアの床面積:548.6m³(21.1m×26.0)

機器の欠損率:35%

(主要な機器としてロータリースクリーン:約20%(約17.4m²×6台)、海水ポンプ:約5%(約4.1m²×6台)が設置されており、その他の機器の欠損を考慮して設定)


以上より

海水ポンプエリアの水位:約0.53m(186.5/(548.6×0.65))

4.溢水影響評価

想定される溢水水位 EL.3.03m (EL.2.5m + 0.53m) に対して、防護対象設備である 海水ポンプの機能喪失高さは EL.4.65m であることから、溢水の影響はない。

海水ポンプエリア

海水取水設備(断面図)

タービン建屋からの溢水影響

1. はじめに

タービン建屋に設置されている循環水管の伸縮継手及び2次系設備における地震時の破損を想定した場合及び地震により、循環水ポンプが停止するまでの間に生じる溢水量に2次系設備の保有水を合算した水量が、タービン建屋内の地下部に貯水可能であることを確認する。また、防護対象設備が設置されている制御建屋への溢水高さ(EL.13.8m)と比較し、防護対象設備への影響がないことを確認する。また、基準津波による影響評価についてもあわせて実施する。

なお、3、4号機は地下階で繋がっていることから、3、4号機あわせて評価を実施することとする。

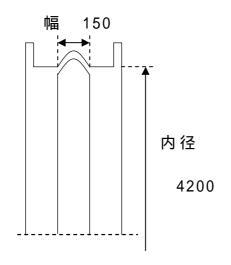
2. 溢水流量

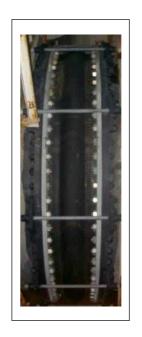
溢水流量は「原子力発電所の内部溢水防護評価ガイド(案)付録 B 」に基づき算出する。

(1)想定破損

- ・伸縮継手部が破損
- ・破損形状は Dt/4 クラック

Q = A x C (2 x g x H) x 3600 Q: 溢水流量 (m³/h) A: 断面積 (m²) (D/2) x (t/2) にて算出 C: 損失係数 (= 0.82) H:水頭 (m)(= 16.2m)


内 径 (mm)D	板厚(mm)t	溢水流量 (m³/hr)/ユニット
4,200	30	1657.0


(2)地震による破損

- ・伸縮継手部が破損
- ・破損形状はリング状破損

Q=A×C (2×g×H)×3600 Q:溢水流量(m³/h) A:断面積 (m²) (×D×W)にて算出 C:損失係数 (= 0.82) H:水頭 (m) (= 16.2m)

内径(mm)D	継 手 幅 (mm)w	溢水流量 (m³/hr)/ユニット
4,200	150	104057.2

3. 隔離までの時間

(1)想定破損

タービンサンプあるいは海水サンプ の警報による異常の認知時間	10 分
循環水ポンプ停止	6 分
合計	16 分

(2)地震時

地震発生事象確認	10 分
地震発生による異常の認知時間	10 分
循環水ポンプ停止	6 分
合計	26 分

4. 溢水量評価

(1)循環水管からの溢水量

溢水量は以下の式により算出

(溢水流量)×(隔離までの時間)=(溢水量)

	溢水量(m³)		
想定破損	約 450×2 ユニット = 約 900		
地震による破損	約 45,100×2 ユニット = 約 90,200		

(2)建屋内機器、配管の保有水

保有水量/ユニット		 	
配管(m³)	機器 (m³)	休日小里口司(= //ユーツ ・	
約 1,130	約 2,940	約 4,100	

 $4,100 \times 2 \ \square \ \square \ \lor \ \vdash = 8,200 \text{m}^3$

(3) 津波による循環水管からの溢水量

基準津波による設計津波高さは 3、4 号機循環水ポンプ室前で EL.2.85mと評価されるため津波が地上を遡上することはなく、また、循環水管を経由したタービン建屋への流入量は循環水ポンプが停止するまでの間に生じる溢水量に比べて十分小さい。

5.空間容積

空間容積は EL.9.25m以下のタービン建屋体積から、欠損部体積を差し引いた値。

欠損部体積を算出した主な設備は以下のとおり。

建屋構造物:柱基礎、壁、復水器基礎、タービン架台脚部、

循環水管基礎等

設備 :ポンプ、タンク、盤等

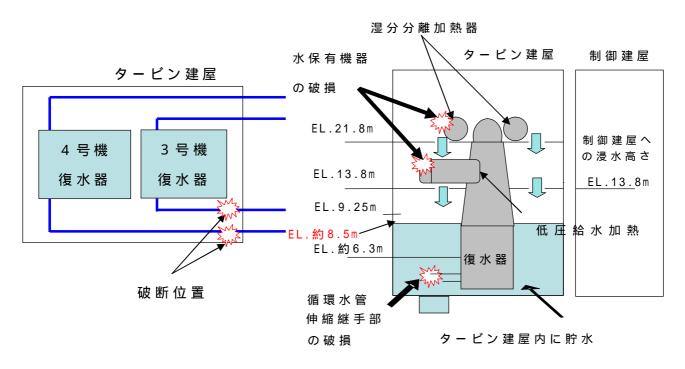
配管 :循環水管、復水管、海水管等

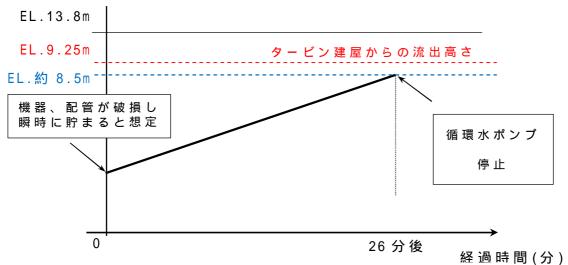
3、4号機のタービン建屋は地下階で繋がっていることから、3、 4号機を合算した空間容積を算出。

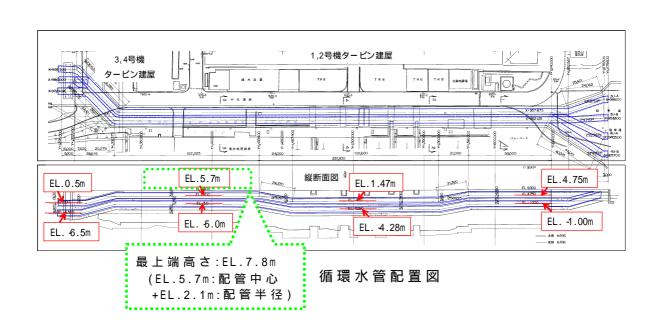
ユニット	地下体積(m³)	欠損部体積(m³)	空間容積(m³)
3 号機	約 106,000	約 43,000	約 63,000
4 号機	約 74,000	約 25,800	約 48,200

合計 約 111,200 m³

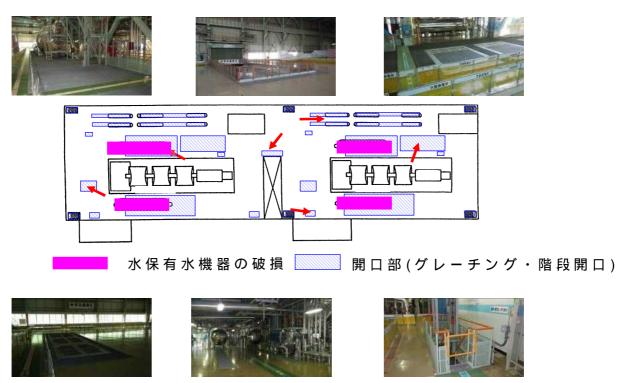
6.評価結果

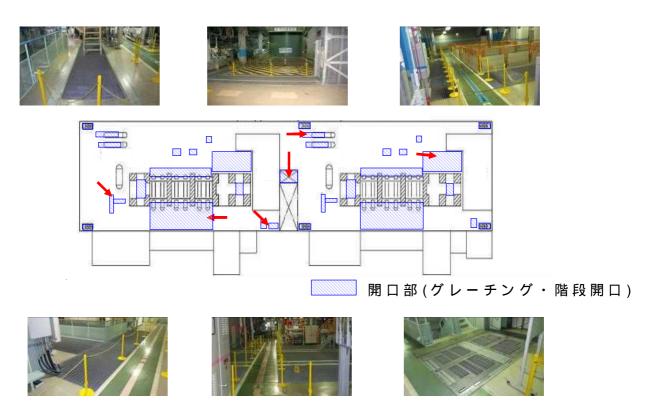

循環水管からの溢水量は地震による破損の場合は約 90,200m³ である。機器や配管の破損による溢水量は約 8,200m³ である。

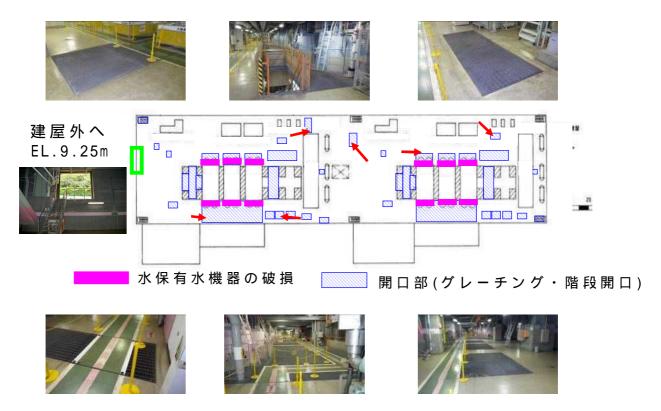

したがって、循環水管と建屋内機器、配管の同時破損を想定した場合の溢水量は、上述の値の合計値約 98,400m³ となる。一方の空間容積は約 111,200m³ である。


以上より、溢水はタービン建屋地下に滞留し、制御建屋の浸水高さを下回ることを確認した。

評価結果


	開口	伸縮 継手 諸元 (m)	か	₹水管 らの ヾ(m³)	機器配 管から の溢水 (m³)	溢 水 量 (m³)	空間体積 (EL.9.25m) (m³)	制御建 屋への 浸水高 さ(m)
想	1/4Dt クラック	内 径	3	約				
定	(配管口径 1/2 長	4,200	号 機	450		約		
破	さと配管肉厚の	板 厚	4	約		900		
損	1/2幅)	30	号 機	450			約 111,200	EL.
地	伸縮継手部の全	内 径 4,200	3 号機	約 45,100	#h 0 000	約 98,400	תא ווו, בטט	13.8
喪時	周(リング)状破損	継手幅	4 号機	約 45,100	約 8,200	(約 EL. 8.5m)		




タービン建屋内の溢水水位イメージ

タービン建屋 EL.21.8m 溢水経路図

タービン建屋 EL.13.8m 溢水経路図

タービン建屋 EL.6.3m 溢水経路図

屋外タンクからの溢水影響

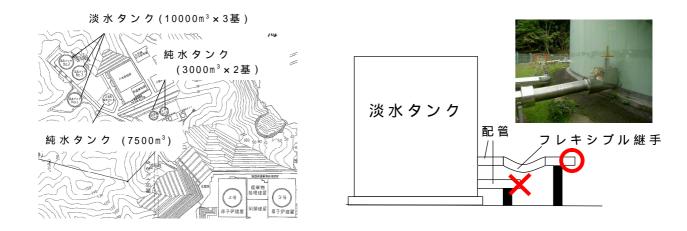
1.はじめに

原子炉施設高さ以上に設置されており、溢水の影響が想定される 屋外タンク(淡水タンク及び、純水タンク)について、溢水による 影響評価を実施する。

2. 地震時のタンク座屈

淡水タンク等が基準地震動 Ss により座屈しないことを確認した。評価結果は以下の通り。

機器名称	設置 高さ (m)	基数	発 生 値	評価基準値	判定
淡水タンク	81.0	3 基	0.35	1	
純水タンク	72.5	2 基	0.72	1	
純水タンク	81.0	1 基	0.37	1	


3. 地震時のタンクすべり量

淡水タンク等には基礎ボルトがないことから、基準地震動 Ss に対するタンクすべり量を解析により算出した。タンクのすべり量は以下の通りであり、フレキシブル継手の吸収長さを下回ることから、配管は破損しない。

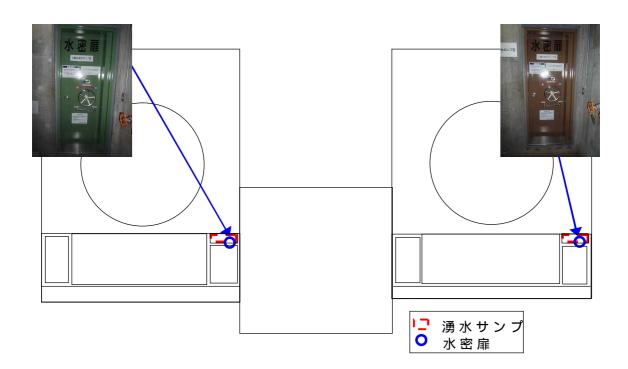
機器名称	設置 高さ (m)	基数	すべり量 (mm)	フレキシブル継手の吸収長さ
淡水タンク	81.0	3 基	18.7	100mm
純水タンク	72.5	2 基	65.1	100mm
純水タンク	81.0	1 基	63.3	100mm

4. 屋外タンクからの溢水影響

屋外タンクに接続されるフレキシブル継手以外の配管からの漏えいを想定した結果、溢水量は隣接する側溝の処理容量以下であり、原子炉周辺建屋への溢水影響がないことを確認した。

評価結果

	溢水量	側溝の処理	
	(65A以下)	容量	
EL.80m 盤	0.047m³/s	0.245m ³ /s	
タンク群	0.047m ² /S	0.245m ² /S	
EL.72.5m 盤	0.011m³/s	0.000 = 3 / 5	
タンク群	U.UIIM°/S	0.080m³/s	


湧水サンプからの溢水影響

1. はじめに

湧水サンプからの原子炉周辺建屋への溢水影響を確認する。

2. 確認結果

湧水サンプの出入口扉を水密扉としていることから、湧水サンプからの溢水が原子炉周辺建屋に流入することはないことを確認した。

7	大飯発電所 3,4 号機における原子力発電所の内部火災影響評価について	-

1. はじめに

発電用軽水型原子炉施設内の火災区域又は火災区画に設置される安全機能を有する構築物、系統及び機器を火災から防護することを目的として、「実用発電用原子炉及びその附属施設に関する技術基準を定める規則(仮称)」では必要な火災防護対策を要求している。本報告書は、大飯発電所3,4号機を対象として、これらの要求に基づく火災防護対策により、原子炉施設内で火災が発生しても、原子炉の高温停止及び低温停止(以下、高温停止及び低温停止を総称して、「安全停止」という。)に関わる安全機能が少なくとも1系統確保されることについて確認した内部火災影響評価の結果を示すものである。

2. 火災の想定

原子炉の安全停止に関わる安全機能に影響を及ぼす可能性がある最も過酷な単一の火災を火災区画内に想定する。

具体的には、A,Bトレンの停止・冷却機能を有する機器がある 火災区画及び隣接区画において火災を想定した。

地震時においては、耐震 B、C クラスの機器を火災源として、火災区画内で最も苛酷な単一の火災を想定した。

3. 火災時の原子炉の安全確保

2. で想定する火災に対して、原子炉の停止を要求される場合に、 火災による影響を考慮しても、安全停止に関わる安全機能が少なく とも1系統確保されることにより、原子炉を安全停止できることを 確認した。

4. 情報及びデータの収集・整理

原子炉の安全停止に影響が及ぶシナリオを特定するために、各火災区画に対して、火災源、延焼の可能性を識別したスクリーニングに必要な情報を火災区画特性表として整理した。

4.1 火災区域及び火災区画の設定

4.1.1 火災区域の設定

火災区域は、耐火壁によって囲まれ、他の区域と分離されている 区域であり、次の考え方により設定した。

・耐火壁(耐火性能を持つコンクリート壁、貫通部シール、防火扉、防火ダンパなど)により囲われた区域を火災区域として設定した。ただし、屋外に設置される設備に対しては、附属設備を含めて火災区域とみなす。(海水ポンプを設置している箇所がこれに該当する)

4.1.2 火災区画の設定

火災区画の範囲は、原子炉の安全停止に係る系統分離等に応じて 設定した。

火災区画の設定イメージを添付資料1に示す。

4.2 機器リストの作成

火災区画内に設置される機器(ポンプ、空調機器、盤、ケーブル、 電動弁等)の配置に係る情報を調査し、火災区画特性表に整理した。

4.2.1 火災防護対象機器の特定

火災によって、原子炉の安全停止に影響を及ぼす可能性のある機器を火災防護対象機器として特定する。火災防護対象機器には、多重性を有する安全上重要な設備で以下の系統の設備等があり、系統分離が要求されている。

<火災防護対象機器を有する系統>

- a. 安全保護系
- b. 原子炉停止系

- c. 補助給水系
- d. 高圧注入系
- e. 主蒸気系(主蒸気逃がし弁等)
- f. ほう酸注入系
- g. 1次冷却系(加圧器逃がし弁等)
- h. 非常用所内電源系
- i. 事故時監視計器
- j. 余熱除去設備
- k. 最終的な熱の逃がし場へ熱を輸送する設備
- 1. 上記設備の補助設備(非常用換気空調系等)

火災による原子力発電所への影響としては、火災による誤動作が発生し、起因事象が発生した場合に事象を緩和する機器が少なくとも1系統作動する必要がある。この起因事象への対象系統の抽出の考え方については、添付資料2にまとめる。

ここで、火災により外部電源が喪失することも考慮し、非常用所 内電源系に非常用ディーゼル発電機を含めて、選定した。

4.2.2 火災防護対象ケーブルの特定

火災により、火災防護対象機器が直接影響を受ける場合の他、ケーブルトレイのケーブルが火災により影響を受けることを考慮すると、火災防護対象機器を駆動もしくは制御するケーブルが火災防護対象ケーブルとなるが、安全側に安全系ケーブルを火災防護対象ケーブルとして特定した。

なお、4.2.1の火災防護対象機器及び4.2.2の火災防護対象ケーブルは、火災防護上、以下のいずれかの方法にて系統分離を行うことが要求されているが、他にも同等以上である手法も用いて系統分離を行う。

- ① 系統分離されている各系列(火災防護対象機器及び火災防護対象 ケーブル)の間が3 時間以上の耐火能力を有するバリア等で分離 されていること。
- ② 系統分離されている各系列(火災防護対象機器及び火災防護対象ケーブル)の間の水平距離が6m以上あり、かつ、火災感知設備及び自動消火設備が当該火災区画に設置されていること。この場合、水平距離間には可燃性物質(一時的な持ち込みも含め)が存在しないこと。
- ③ 系統分離されている各系列(火災防護対象機器及び火災防護対象ケーブル)の間が1時間の耐火能力を有するバリア等で分離されており、かつ、火災感知設備及び自動消火設備が当該火災区画に設置されていること。

4.3 火災源の識別と等価火災時間の設定

火災区画の耐火壁の耐火能力を、当該火災区画内の可燃性物質の量と火災区画の面積に基づき、火災の継続時間を示す指標に相当する等価時間を用いて評価した。

4.3.1 火災源の識別

原子炉の安全停止に必要な火災防護対象機器及び火災防護対象 ケーブルに影響を及ぼす可能性のある火災を、当該の火災区画及び 隣接する火災区画内に想定した。

具体的には影響を及ぼす可能性のあるものとして、想定火災について次表のように選定、除外した。

表-1 想定火災の選定・除外について

想定火災	理由
①補機潤滑油の漏え	潤滑にグリースを用いる場合は内部火災
いに伴う火災	に限定されるが、潤滑油を用いる場合は漏
	えいに伴い、発火するか否かを考慮して、
	火災の影響を想定する:添付資料3-1
②電力ケーブルの	制御・計装ケーブルについては、過去の制
過電流による火災	御盤の盤内電線の分離性の燃焼試験等の
	知見から当該ケーブルトレイ内に火災の
	影響が限定されるが、電力ケーブルについ
	ては過電流による隣接ケーブルトレイへ
	の火災の影響を想定する。ただし、電線管
	で施工されている範囲については、仮に電
	線管内部でのケーブル単体の燃焼を想定
	しても、電線管内部に影響が限定されるこ
	とから、影響を与える火災としては想定し
	ない:添付資料3-2,3-3
③電気盤	制御・計装盤、原子炉トリップ遮断器盤、
(電圧440V以上)	電源盤については過去の実証試験により、
	火災の影響は当該盤内に限定され、周囲に
	影響を及ぼすことはないことが確認され
	ているが、念のため電圧440V以上の電気盤
	について抽出する:添付資料3-3

4.3.2 等価時間の設定

火災区画内の全ての可燃性物質の火災荷重(単位面積当りの発熱量)と燃焼率(単位時間単位面積当たりの発熱量)から、以下の手順で、各火災区画の等価時間(潜在的火災継続時間)を求め、耐火壁の耐火能力を評価した。

(1) 火災区画の床面積

各火災区画の床面積(m2)を算出した。

(2) 火災区画の発熱量

識別した火災源の発熱量を、火災区画に設置される可燃性物質の 量に応じて設定した。

発熱量=火災区画内の可燃性物質の量×単位発熱量(kJ) ここで、

可燃性物質の量:火災区域内の各種可燃性物質の量(m3又はkg) 単位発熱量 : 可燃性物質の種類ごとの単位量当たりの熱量 (kJ/m3 又はkJ/kg)

(3) 等価火災時間の設定

前記4.3.2(2)で算出した火災区画の発熱量から、下式により等価火災時間を算出した。等価時間は、火災区画間の火災伝播の判定に使用される。

等価火災時間(h)=火災荷重/燃焼率 =発熱量/火災区画の面積/燃焼率

ここで、

火災荷重=発熱量/火災区画の面積

燃焼率としてはNFPA(National Fire Protection Association)ハンドブック(6)のFire Protection Handbook Section/Chapter 18, "Confinement of Fire in Buildings Association)"の標準火災曲線のうち最も厳しい燃焼クラスであるCLASS E の値である908,095kJ/m2/hr を用いた。

なお、可燃性物質毎に使用している単位発熱量のうち、代表的な ものについては、添付資料-4にまとめた。

4.4 火災感知手段の把握

5. でスクリーンアウトされない火災区画を対象として、火災影響評価で作動を期待する火災感知設備を確認した。

4.5 火災の消火手段の把握

5. でスクリーンアウトされない火災区画を対象として、火災影響評価で作動を期待する消火手段が自動か手動かを確認した。

4.6 原子炉運転への影響の確認

保守的に火災が発生すると、すべて原子炉を停止する要因がある と仮定し、6.では、異常事象の種類によらず、少なくとも1系統の 火災防護対象設備の機能が失われないことを確認することにより、 同等以上の安全性を有していることを確認した。

4.7 火災区画特性表の作成

スクリーニングに用いるために、前記4.1から4.6で確認した情報、 根拠等を含む火災区画ごとの火災区画特性表を作成した。

4.7.1 火災区画特性表

火災区画特性表は、火災源、火災の伝播経路、火災影響の緩和系、 安全関連機器とその機能喪失が原子力発電所の安全性に与える影響、火災シナリオの作成に必要な原子力発電所の情報を、火災区画 単位で表にまとめたものである。

一般に、火災区画特性表の作成に必要な情報は、配置や系統構成がわかる図書類、解析等の評価報告書等のほか、プラントウォークダウン等により収集した。どの火災区画にどの機器が存在するのかが分かるように、火災区画特性表は、火災区画単位で作成する。ある火災区域に複数の火災区画が存在する場合は、その火災区画の数だけ火災区画特性表を作成した。

- 4.7.2 火災区画特性表の記載内容 火災区画特性表の記載内容を以下に示す。
 - ①火災区画の説明火災区画の名称、床面積、床面積を記載した。
 - ②火災区画の火災シナリオの説明 火災シナリオの想定の説明を記載した。
 - ③火災区画にある火災源 火災区画ごとの火災源、存在する可燃性物質の量、発熱量を種類 ごとに記載した。可燃性物質の発熱量を床面積で除することによ り火災荷重を求め、また火災荷重と燃焼率との関係から等価時間 を求め記載した。
 - ④火災区画にある防火設備 火災区画ごとの火災感知設備、消火設備、障壁の耐火能力を記載 した。
 - ⑤火災区画に隣接する火災区画と火災の伝播経路各火災区画に隣接する火災区画、火災伝播経路、障壁の耐火能力、当該火災区画 の消火方法、伝播の可能性がある火災区画の消火方法を記載した。
 - ⑥火災により影響を受ける機器、ケーブルと関連する機器 各火災区画における火災により影響を受ける機器、安全系のケーブルトレイを記載した。
 - ⑦火災により影響を受ける緩和系 各火災区画で火災を想定した場合に、影響を受ける緩和系を記載 した。
 - ⑧火災区画にある火災源機器数 各火災区画に存在する火災源の機器数を、カテゴリー分類して整理して、記載した。

5. スクリーニング手順

5.1 火災区域のスクリーニング

本影響評価においては、原子炉建屋、制御建屋、廃棄物処理建屋を含めて設定した火災区域内においては、火災による起因事象を前提とし、原子炉の安全停止に係る影響を評価するため、火災区域でのスクリーニングの対象となる火災区域は無い。

なお、この火災区域については、隣接するタービン建屋における 火災からの影響を受けないことを確認した。(添付資料-5)

5.2 火災区画のスクリーニング

火災区域内において、火災区画毎に火災区画特性表を利用してスクリーニングを実施した。スクリーニング手順は、以下の3 ステップのとおりである。

- ・ステップ1:隣接区画への火災伝播の可能性を評価した。
 - ・ステップ2:ステップ1において、火災伝播の可能性があると評価 された火災区画内において、影響を受ける機器、緩 和系を特定した。
 - ・ステップ3: 火災により起因事象が発生すると想定し、隣接区画 に伝播しないことで少なくとも一つ以上の安全停 止機能が確保される場合は当該火災区画をスクリ ーンアウトした。

以下、各ステップ毎の手順について説明する。

(1)ステップ1:隣接区画への火災伝播の可能性評価

① 入力データ

当該火災区域における耐火壁の耐火時間、火災荷重から求めた等価火災時間を火災区画特性表に記載した。

② 実施 手順

火災区画内の火災が以下のa又はbのいずれかを満足する場合には、隣接火災区画に火災が伝播するものとして、想定した。

- a. 隣接区画への開口部が存在する場合
- b. 火災発生区画の等価時間>火災伝播経路の耐火時間の場合 火災の伝播先の火災区画からさらに別の隣接する火災区画 への伝播までは考慮しない。この理由は、さらなる火災の伝播 までには、時間的に十分消火されると考えられるためである。 スクリーニング及び火災伝播評価において、火災感知の情報 が確定しない場合があるため、保守的に火災は感知されないも のとした。
- (2)ステップ2:対象火災区画及び火災伝播区画内で影響を受ける機器、緩和系の特定
 - ① 入力データ

火災により起因事象が発生すると想定して、対象火災区画内に存在する火災防護対象機器及びケーブルとこれに係る緩和 系についての情報を整理した。

②実施手順

対象火災区画内の火災防護対象機器が全て機能を喪失する と想定した場合に、影響を受ける緩和系を特定した。対象火災 区画内の火災防護対象ケーブルが全て損傷すると想定した場 合に、影響を受ける機器及び緩和系を特定した。このような特 定作業を、対象火災区画のほかに、伝播先の火災区画について も行った。

対象火災区画及び伝播先の火災区画内で、火災により影響を 受ける機器、緩和系について情報を整理した結果、影響を受け る緩和系がない場合は、当該火災区画はスクリーンアウトした。

- (3)ステップ3:原子炉安全停止の観点からのスクリーニング
 - ①実施手順

ステップ 2 までに整理された情報を基に、対象火災区画及び

伝播先の火災区画内の火災の影響により、少なくとも1つ以上 の原子炉の安全停止機能が確保されるか確認し、問題がない場 合には、当該 火災区画はスクリーンアウトした。

6. 火災伝播評価の手順

火災区画を構成する火災区画内の個別の発火源を特定して、原子炉の安全停止機能への影響を確認した。

6.1 系統分離対策の確認

原子炉の安全停止に係わる安全機能を有する構築物、系統及び機器は、その相互の系統分離及び常用系との系統分離を行うために、 火災防護規定に基づく以下の三つのうち基本的には①の方策を講 じているが、他にも同等の安全性を確保しえると判断している対策 を講じている。

- ① 系統分離された火災防護対象機器及び火災防護対象ケーブルについて、互いの系列間が3時間以上の耐火能力を有するバリア等で分離されていること。
- ② 系統分離された火災防護対象機器及び火災防護対象ケーブルについて、互いの系列間の水平距離が6m以上あり、かつ、火災感知設備及び自動消火設備が当該火災区画内に設置されていること。この場合、水平距離間には可燃性物質(一時的な持ち込みも含む)が存在しないこと。
- ③ 系統分離された火災防護対象機器及び火災防護対象ケーブルについて、互いの系列間が1時間の耐火能力を有するバリア等で分離されており、かつ、火災感知設備及び自動消火設備が当該火災区画内に設置されていること。

以下の手順により、その確認を行った。

- (1) 火災を想定する火災区画内あるいは隣接火災区画に対して、6. で作成した火災区域(区画)特性表等により、原子炉の安全停止 に係る安全機能を有する機器、緩和系を特定した。
- (2) 特定した機器、緩和系に対して、火災防護規定で定められた① による系統分離が行われること、または、それ以外の同等以上 な方法で系統分離を行う場合を含めて確認を行った。①による

系統分離を確認する場合は、全米防火協会NFPAハンドブックにおいて、耐火壁の厚さと耐火時間の関係が示されており、3時間の耐火性能を有する耐火壁については、鉄筋コンクリートの場合、厚さが約150mm以上とされている。

この厚みを目安とし、安全停止に必要な1トレン機器が設置 されている区画が、他の隣接区画と耐火壁によって、分離され ていることを確認した。

(3) 火災区画内の最も過酷な単一の火災によっても、原子炉の安全停止機能が確保されることを確認した。

6.2 火災区画内の評価

(1)対象火災区画の選定

対象となる火災区画に関する情報を整理した。(5のスクリーニングで用いた情報も活用した)

- (2) 火災源の特定
 - (1)で特定した火災区画内で想定される火災源を特定した。 ただし、補機の潤滑油等の漏えい油火災については、保守的に 火災源となる補機が保有する潤滑油全量の燃焼を考慮した。
- (3)ターゲットの特定

評価対象は、互いに相違する系列の火災防護対象機器、ケーブルとした。

(4) 火災源の影響節囲の特定

実証試験より得られたデータ、手法を用い、火災源からの影響 範囲を特定した。

(5)火災区画内の評価

同一火災区画内において、3時間以上の耐火能力を有するバリア以外の方法で、間隔・隔壁による火災影響評価を行う場合は、「原子力発電所の火災防護規程」(JEAC4626)に基づき、次のように火災を想定し、その影響を評価した。

①ケーブル火災(計装、制御、電力)

ケーブルトレイに布設されたケーブル過電流による火災は、燃焼試験結果から、制御・計装ケーブルについては、当該ケーブルは断線、短絡により損傷するが、当該ケーブルトレイ内の他の隣接ケーブルに延焼しない火災の態様であることを確認した。また、電力ケーブルについては、当該ケーブルトレイ内の隣接に延焼するが、米国電気電子工学会(IEEE)規格 384 の分離距離より遠方に設置されている場合は、影響がない火災の態様であることを確認した。

以上の火災の態様から、計装、制御ケーブルの影響は、安全系 1 トレン又は 1 チャンネルに留まる。電力ケーブルについては、防護すべき安全系のトレン間の分離距離が IEEE384の分離距離を満足していることにより、火災の影響が 1 トレンに限定されることを確認した。

②電気盤火災(動力盤、制御盤)

盤の過電流による火災の燃焼試験結果から、動力盤については、当該盤は機能を喪失するが、盤外には延焼しない火災の態様であることを確認した。また、制御盤については、スイッチ等の内部構成品が一定の距離等により分離されている場合は他の構成品には延焼しない火災の態様であることを確認した。

以上の火災の態様から、電気盤内の安全系が1トレン又は1チャンネルであれば、火災の影響は1トレン又は1チャンネルに留まる。複数の安全系のトレン又はチャンネルが混在する場合には、盤内の分離方法として妥当性が確認された方法を用いることで、火災の影響が1トレン又は1チャンネルに限定されることを確認した。

③補機火災

補機内部火災については、補機の潤滑油、又はモータ絶縁物が、補機内部で内包されている状態において、何らかの着火源により着火し内部で燃焼する火災である。火災燃焼試験の結果

から、当該補機は機能を喪失するが、他へ炎の伝播により影響 を及ぼさない火災の態様であることを確認した。

一方、補機漏えい油火災については、補機の潤滑油が漏えいし、機器ベース、オイルパン、ドレンリムに漏えいした状態、あるいは、室内床面に溜まった状態において、何らかの火源により着火した火災であり、火災燃焼試験の結果から、当該補機は機能喪失するが、その火災の影響範囲については、熱伝導・対流・輻射を考慮して影響範囲を定めることができることを確認した。また、補機漏えい油火災の規模については、漏えいの監視設備の設計状態により補機保有油全量、又は補機最大保有部1箇所の油量とし、油火災面積は、ドレンリム、機器ベース、オイルパン、室内床の設計面積として想定できる。

以上の火災の態様から、補機内部火災については、火災の影響は安全系 1 トレンに留まる。補機漏えい油火災については、 熱による影響範囲を求め、火災の影響が安全系 1 トレン又は 1 チャンネルに限定されることを確認した。

なお、クレーン等については、常時使用はしておらず、使用時には操作員が近くにいることから、補機漏えい油火災は想定火災としていない。

④燃料油火災

補機火災と同様に、内部火災と漏えい油火災を想定した。

⑤その他の火災

水素ガス火災及びチャコールフィルタ火災があり、これら機器は、機能喪失するものとして想定した。火災の態様から、火災の影響は1トレンに留まる。

6.3 火災伝播評価

火災区画間の伝播評価は、6.2で用いた補機漏えい油の温度評価式等により行う。

- (1)火災区画対象火災区画の特定
- (2)火災区画内に設置された機器(可燃物)の状況を踏まえ、火災源を選定する。火災源からの影響評価については過去の実証試験の知見を活用し、例えば補機漏えい油火災時の温度相関式により、油が全量漏えいした場合の空間温度を算出した*。
 - * 換気量を考慮した空間体積と油燃焼量の比をパラメータとして算定
- (3) ターゲットの特定
- (4)火災伝播評価

ケーブルに対する損傷基準は、保守的に短時間許容温度 (90°C) を用いた。その温度に到達しないことを補機漏えい油火災時の温度 評価結果と比較することによって、ケーブルが損傷しないことを確認した。損傷が否定できない場合、防護対策の強化が必要である。

6.4 評価結果と今後の対策について

5のスクリーニング及び 6.1~6.3 の確認、評価の結果として、大飯 3,4 号機の各火災区画において、いかなる火災によっても、安全保護系、原子炉停止系の作動が要求される場合には、火災による影響を考慮しても、多重化された系統の少なくとも一つが機能を失うことなく、原子炉を高温停止及び低温停止できることを、火災影響評価により確認した。大飯 3,4 号機の火災影響評価のまとめを添付資料 6 に示す。

なお、6.2の火災区画内の評価においては、3時間以上の耐火能力以外の方法(補機漏えい油火災の温度評価)も用いて、影響評価を行っていることから、火災の影響軽減の向上のため、次回の定期検査時には、火災感知器や消火装置(自動式又は固定式)の追設、

隔壁等を強化することで検討、計画している。

また、運転中の現時点においても、でき得る限りの火災の影響軽減向上のための方策(簡易な耐火隔壁、消火装置の設置等)を実施している。

以 上

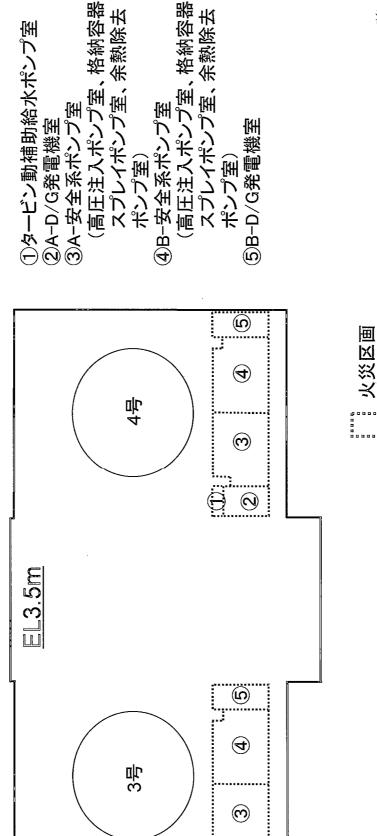
<添付資料リスト>

添付資料1:火災区域及び火災区画の設定イメージ

添付資料2:誤作動に対する火災防護対象の選定について

添付資料3-1:補機潤滑油燃焼時の温度評価

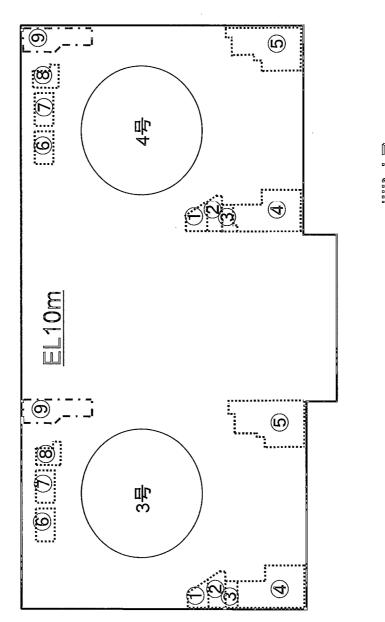
添付資料3-2:電力ケーブルトレイの過電流による火災


添付資料3-3:電気盤(制御盤、電気盤)の火災

添付資料4:可燃性物質毎の単位発熱量

添付資料5:タービン建屋からの火災の影響について

添付資料6:大飯3,4号機火災影響評価結果のまとめ


火災河面巡

(3)

[H] ①A-電動補助給水ポンプ室 ②B-電動補助給水ポンプ室 ③ダービン動補助給水ポン /ク率 (4)A-D/G発電機室(5)B-D/G発電機室 ⑥A-充てんポンプ ⑦B-充てんポンプ ⑧C-充てんポンプ ⑨ほう酸ポンプ、タ

火災区画

誤作動に対する火災防護対象の選定について

(1) 火災防護対象の選定

内部火災影響評価では、原子炉施設内のいかなる火災によっても、安全保護系、原子炉停止系の作動が要求される場合には、火災による影響を考慮し、 多重化されたそれぞれの系統が同時に機能を失うことなく、原子炉を高温停止及び低温停止できる設計であることを確認する。

この確認のために、安全保護系、原子炉停止系の作動が要求される場合に、 原子炉を高温停止及び低温停止するのに必要な機器を火災防護対象として 選定する。

まず、旧発電用軽水型原子炉施設の安全評価に関する審査指針を参考に、 過渡事象及び事故を対象として、ケーブル火災に伴う機器の誤動作により、 発生する可能性のある起因事象を抽出し、表-1 に整理する。

表-1 火災によって発生する起因事象の抽出

起因事象		スクリーンアウトする理由
①原子炉起動時の制御棒の異常な引き抜き		
②出力運転中の制御棒の異常な引き抜き	0	
③制御棒の落下及び不整合	0	
④原子炉冷却材中のほう素の異常な希釈	0	
⑤原子炉冷却材流量の部分喪失	0	
⑥原子炉冷却材系の停止ループの誤起動	0	
⑦外部電源喪失		
⑧主給水流量喪失	0	
⑨蒸気負荷の異常な増加	0	
⑩2次冷却系の異常な減圧	0	
⑪蒸気発生器への過剰給水	0	
⑫負荷の喪失	0	
13原子炉冷却材系の異常な減圧	0	
④出力運転中の非常用炉心冷却系の誤起動	0	
⑤原子炉冷却材喪失 (LOCA)	-	火災によって1次冷却材バ
		ウンダリに機械的な損傷が
		生じることはないのでLO
		CAは起こらない。
⑩原子炉冷却材流量の喪失	0	
⑩原子炉冷却材ポンプの軸固着		
18主給水管破断		火災によって主給水管に機
		械的損傷は起こらない。
⑩主蒸気管破断	_	火災によって主蒸気管に機
		械的損傷は起こらない。
②制御棒飛び出し	-	本事象は制御棒駆動系ある
		いは同ハウジングの破損等
		により制御棒クラスタ1本
		が炉心外に飛び出すことを
		想定するものであるが、火災
		の発生によって上記事象を
		発生させる機械的損傷は起
		こらない。

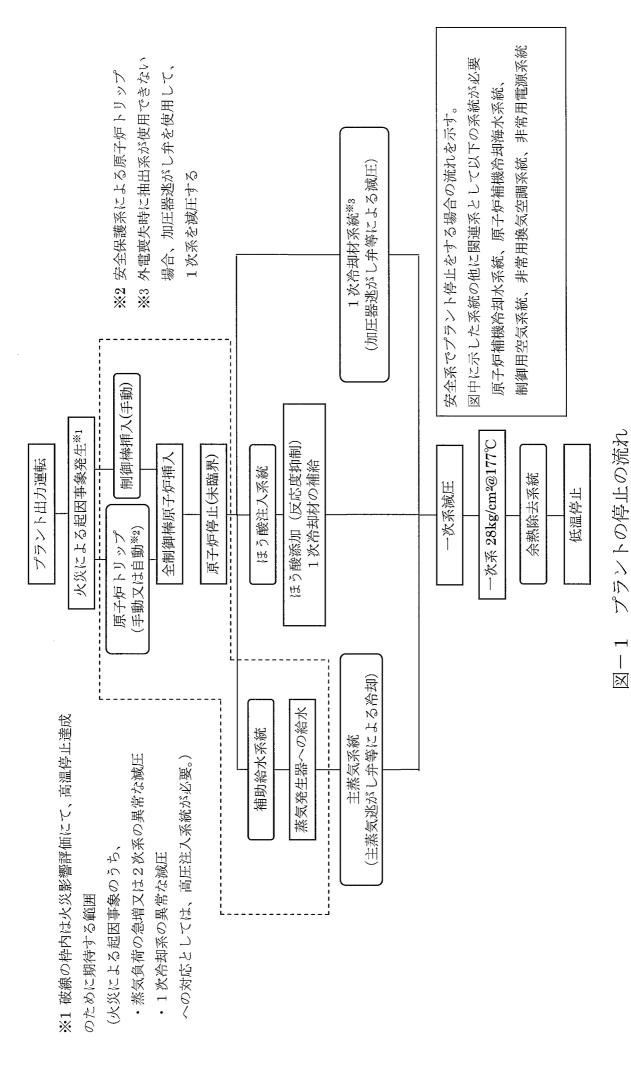
表-1で抽出された結果を基に、火災による起因事象が発生した場合に高温停止を達成するための系統を表-2にまとめる。

表-2 火災による起因事象発生時に高温停止を達成するための系統

		9 1 2 7 1 1 1 2
火災により発生する起因事象	起因事象発生時に対処	備考
(①~⑯は表-1 に対応)	する機能 (系統)	
制御棒引抜、落下:①②③	・原子炉トリップ	
ほう素の異常な希釈:④	(安全保護系)	
(ほう素濃度制御系異常)	(原子炉停止系)	
1次冷却材流量喪失:⑤⑥⑦⑯⑰	• 補助給水	
(1次冷却材ポンプ停止)	(補助給水系)	*1 主給水バイパ
蒸気発生器への過剰給水: ⑪		ス
(主給水制御弁開他*1)		制御弁開
主給水喪失:⑦⑧		*2 復水ポンプ停
(主給水ポンプ停止他*2)		止、主給水制
負荷喪失:⑫		御弁・隔離弁
(主蒸気隔離弁閉他*3)		閉
ECCSの誤起動:⑭		*3 タービン
		トリップ
蒸気負荷の急増又は2次系の異	上記機能に加え、	*4 主蒸気逃し弁
常な減圧: ⑨⑩	・高圧注入	開、タービン
(タービンバイパス弁開他*4)	(高圧注入系)	蒸気加減弁開
1次冷却系の異常な減圧: ⑬		*5 加圧器逃がし
(加圧器逃がし弁開*5)		スプレイ弁開
		加圧器補助ス
		プレイ弁開

表-2のうち、火災により上枠の起因事象が発生した場合は、原子炉は通常の高温停止に必要な系統(安全保護系、原子炉停止系及び補助給水系)により、原子炉を冷却していく。

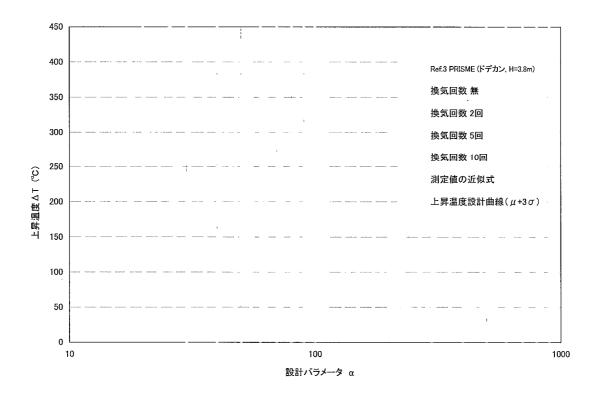
しかし、下枠のような過冷却事象及び1次系の減圧事象では、1次系の圧力の低下等を伴うため、高圧注入系が自動で動作する可能性があるため、前述の原子炉を高温停止まで冷却する系統に高圧注入系を加えて火災防護の対象に選定する。


これらの系統によりプラントを高温停止した後には、低温停止に移行するための機能として余熱除去等、必要な系統を火災防護対象として選定する。

なお、火災に伴う起因事象が発生した場合の対応については、設置許可申 請書の添付書類十において、事象が収束し、安全上の問題がないことを確認 している。

これら一連の対応により、火災による起因事象が発生した場合に原子炉を 「止める」、「冷やす」の機能が果たされる。

しかし、これらの火災による起因事象は原子炉冷却材バウンダリや格納容器バウンダリが損傷する事象とはならないことから、「閉じ込める」の機能については要求されない。


図-1にこれらの起因事象に対するプラントの停止の流れを示す。

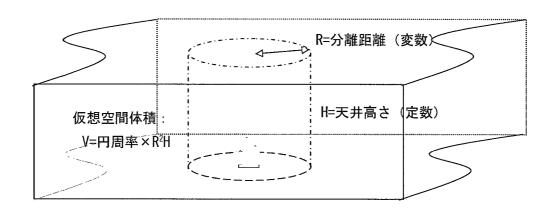
(1) 近似式

油燃焼試験の結果、室内は高温層と低温層に分かれ、高温層は火源からの距離によらず、ほぼ均一になっていたことを踏まえ、高温層の測定データを統計処理して作成した近似式を、測定データと比較して、下図に示す。これに、統計誤差を考慮した曲線(以降、「上昇温度設計曲線」という。)を用い、油燃焼時の温度上昇を保守的に算出している。

上昇温度設計曲線は、2006年以降、現在も行われている OECD/NEA のマルチルームシナリオ火災伝播試験プロジェクト (PRISME) のデータも再現していることからも、妥当なものである。

(2) 上昇温度設計曲線の使用方法

a. 温度の計算

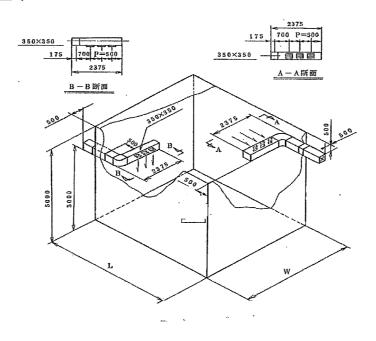

上昇温度設計曲線を用いて、機器が内包する潤滑油が燃焼した場合の 区画内(区画化されていると仮定する空間**を含む)の室内の温度上昇 量を算出する。

b. 距離の計算

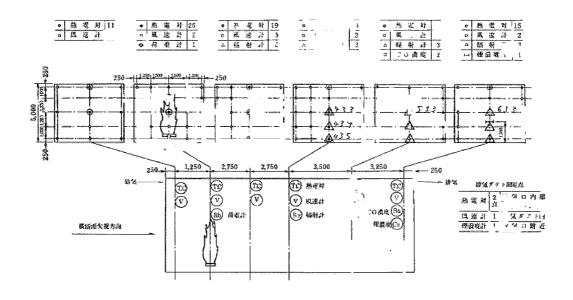
通路等の大きな空間で、実空間の形状で計算すると、温度上昇が非常に小さくなるは、下図のような仮想空間*を想定し、上昇温度設計曲線を用いて、ケーブルが機能喪失する温度以上となる仮想空間の体積を以下のように算出し、求めた仮想空間の体積と高さ(天井高さ)から、最小分離距離(仮想空間の半径)を求める。

[温度上昇]=5340*[換気効果を考慮した空間体積/燃焼物の重量]^{-0.764} 90℃ [ケーブルの短時間許容温度] > [算出する室温] となる仮想 空間の体積を算出する。

仮想空間体積=円周率×[分離距離]²× [天井高さ]



(3)油燃焼試験

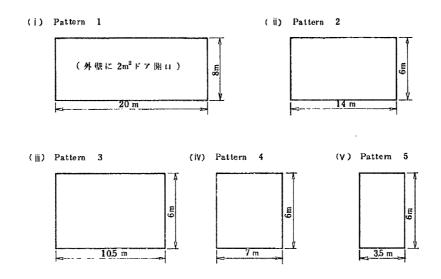

a. 試験内容

潤滑油の火災を想定して油を燃焼させ、室内温度を測定する実証試験を 実施した。

b. 試験装置等

試験体系の例

データ測定点位置図 (例)


試験ケース一覧(51ケース)

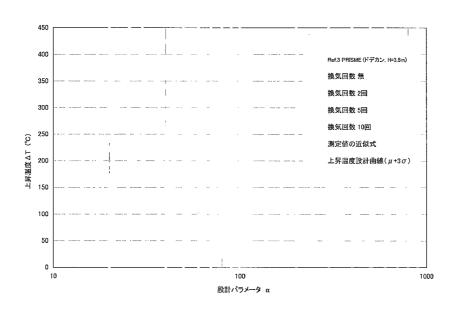
Pottern	医口的体制生化	්රතණය	Tie	фя		ж <u>с</u> .	0 X 3 3					
Furtem	* 0 2 0	(LASERY	1.98	F R	Alm ¹	ಯಕ	0.5 η;*	067	20 cc ³			
				011/6		LOSE	_	TO MARK	0			
			Ð	2		_	Ö	0	J			
1	0 [5]	ร-สก <u>เ</u> ข		10	t.m		٥	Ö	20 d'			
•	\$0 PE	6 \$0		om/r	100.1	THE CONTRACTOR	177630	- 0 0 3 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0				
	ር ፡ *ግመር *	ì	2m² Lio×st.	1								
	to Mine in the special control of the special		LIBARA	10		erres.	117213	_	0			
	×			00./ъ	0	0	٥					
2	o ^ 5	Я±	a	1			ΧO	0				
	14.0	145		5	ು	0	Ģ	Э	- ma			
. *************************************			1	10		_	3	o	٧.,			
	T × IT			079/h	0	٥						
3	o	H ±	1 8	2			ΧO	_	_			
_	10.51			5	9	0	. 0	0				
no counting.	SOUTH THE PARTY OF	****		19			٥	_	_			
	TX T	I		0 ED/2	THE PUR		0					
4	o n t 2:	аь	12	2	0	_	Χų					
	7m + Dax			5	0		0		0			
	一 7			10			٥	0]			
				0 EM	0	0		L	_			
s [0 4	अध	ħ	2	٥	20024			*****			
-	35 m	478 866	*esi	5	0	0	O	'				
	*			10	٥			theres.				

温度測定データ数

約 100 点/ケース × 51 ケース→約 5100 点

室形状は、実機の1リットル以上の油を内包する補機を設置している室を 対象に、形状、寸法を調査し、最も多く存在するパターンの区画寸法を中心 に選定した。

c. 試験条件


試験条件		試験条件の選定理由						
燃焼物	タービン	実機で多く	使用している	5タービ	╱油#90、#	#140 を火		
	油#90	皿で燃焼させ、燃焼速度、炎の高さ、熱輻射量を						
		測定し、燃	焼特性に有意	まな差がれ	ないことを	で確認し、		
		引火点の低	いタービン	油#90 を	燃焼物と	して選定		
,		した。						
		油の種類	燃焼速度	炎高さ	熱輻	射量		
			kg/mm2/min	m	kca1/i			
					3m	5m		
		タービン	1.2	2.0	1500	650		
		油#90						
		タービン	1.2	2.0	1500	650		
		油#140						
		火皿面積	0.5m^2			!		
火皿面	0. 1m ² ,	実機で多く	使っている	ドレンリ、	ム、機器~	ベースを		
積	0.3m^2 ,	模擬した火	皿の燃焼速度	E、熱輻	射量をカノ	ベーする		
	0.5m^2 ,	よう、0.1m	u²~2m²の火皿	.面積を選	建定した。			
	1. $0m^2$,	•						
	2. 0m ²							
換気回	0, 2, 5, 10		2回/hr、10			·		
数	回/hr		領域の代表る					
N No.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		するための(
主な測	温度		周囲への影響			,		
定項目	煙濃度		火災時の現象					
	気流速度		、流速度、油炉	然焼重、	火災状況	を測定場		
	熱輻射量	目として選 	正した					
	油燃焼量							
	火災状況							

d. データ処理及び他の試験結果との比較

試験の結果、室内は高温層と低温層に分かれ、高温層は火源からの距離によらず、ほぼ均一になっていた。また、火源から離れても、輻射量に有意な減少が見られなかったことから、火源からの輻射より高温ガスからの輻射が支配的であることが分かった。このため、高温層のガス温度に着目して、対流と輻射の影響を扱うこととし、統計処理により高温層の温度上昇を求める近似式を作成した。作成した近似式を高温層の測定データと比較して下図に示す。

下図に示すとおり、横軸(α :換気効果を考慮した空間体積と燃焼油重量の比)が大きい(空間体積に照らして、燃焼物が少ない)ほど、温度上昇が小さくなることは、物理的な現象と一致しており、かつ、PRISMEプロジェクトのデータも、本試験と同様の結果となっていることから、本試験は妥当なものである。

本近似式に統計誤差を考慮した上昇温度設計曲線を適用する大飯発電所 3,4号機の区画は、本試験と同様に、空気が局所的に澱むよう箇所がな く、ほぼ均一の高温層が形成される形状で、かつ、αに測定データがある 範囲で判定している。

(参考)

区画火災の簡易温度予測手法との比較

○ McCaffrey 等は、上部高温層温度を一様、火災性状を準定常と近似し、上部高温層の熱量保存の近似式と、実験データとの回帰により、発熱速度、換気量、区画の有効伝熱面積から、区画内の温度上昇を予測する式を設定している。**

 $\triangle T_F/T_0 = \mathrm{const}_1 * X_1^{\mathrm{const}2} * X_2^{\mathrm{const}3}$ $X_1 = \mathrm{f}(Q, m_a)$ 火源の発熱速度 Q、換気量 m_a の関数 $X_2 = \mathrm{g}(m_a, A_T)$ 換気量 m_a 、区画の有効伝熱面積 A_T の関数 const_1 , const_2 , const_3 : 回帰曲線の係数

○大飯発電所3,4号機で使用している上昇温度設計曲線は、McCaffrey等と同様に、実験データとの回帰により、燃焼速度、換気量、空間体積から、区画内の温度上昇を予測するものである。

燃焼速度 v と発熱速度 Q には、Q=v*k (k: 単位燃焼あたりの発熱量)の関係があり、区画の有効伝熱面積は、区画の体積に関連する値であるため、単位燃焼あたりの発熱量や、有効伝熱面積と区画の体積の関係は、上昇温度設計曲線の係数 $const_4$, $const_5$ に含まれている。したがって、上昇温度設計曲線は、McCaffrey 等の式と同様のものである。

高温層の温度上昇 Δ T= 5340* α -0.764= consit₄* α const5 α = V(1+f(n)*t/3600)/S) = V(1+f(n)*t/3600)* (4*v*t * γ / π D²)

有効換気回数 f(n)= 0.574 (tanh(n-3)+1.0)

[換気回数をパラメータとした試験から求めた有効換気回数]

燃焼物の重量 $S=\pi D^2/4*v*t**$ γ

燃焼速度 v=2.033*10⁻⁵(1-e^{-1.80D}) [測定データからの回帰曲線]

V: 区画容積[m3] t: 燃焼時間[sec]n: 換気回数[回] S: 燃焼油量[kg]D: 火皿直径[m] γ: 比重[kg/m3]

const₄, const₅: 回帰曲線の係数

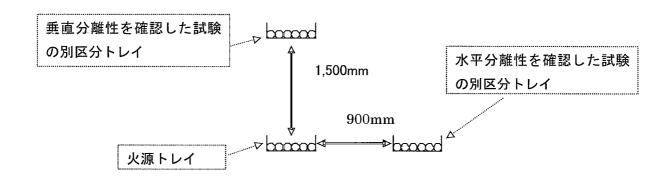
McCaffrey, B. J., Quintiere. J. G., and Harkleroad, M. F. .; Estimating Room Temperatures and the Likelihood of Flashover Using Fire Test Data Correlations Fire technology, Vol. 17, No. 2, 98-119, 1981

<ポンプ内での油火災実証試験>

ポンプ内に潤滑油を内包する補機で、ポンプ内で強制的に潤滑油を燃焼 さえたところ、炎は外部に出ず、周囲に火災の影響が及ばないことを確認 した。

この結果から、ポンプ内での油火災は、ポンプ外に炎が出ないものとして扱う。

	試験条件等
供試体	供試体 A: 横型ポンプ(50kW) 供試体 B: 横型ポンプ(350kW)
	供試体 C: 縦型ポンプ (300kW)
	内包する供試体 下部軸受け 点火位置 供試体C:紅型ポンプ
潤滑油の初期温度	約 60℃(通常の運転状態を模擬)
点火方法	火薬玉 ただし、火薬玉で潤滑油が発火しない場合は、火薬玉+ガ ソリン、火薬玉+ガソリンウエスで発火させる。
試験結果	 ・グリスあるいは潤滑油が軸受け内部に保有されている状態では、容易に発火しなかった。 ・グリスあるいは潤滑油が軸受け内部に保有されている状態で、ガソリンを用いて強制的に発火させても、燃焼は継続しなかった。燃焼を継続させた場合でも、炎は軸受内部に留まり、外部に出なかった。


電力ケーブルトレイの過電流による火災

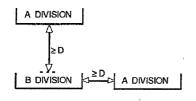
米国電気電子工学学会(IEEE) 規格 384 は、ケーブルトレイ内のケーブルの過電流による火災を想定した場合に、隣接するケーブルトレイのケーブルに影響を与えない離隔距離を分離基準として規定している。

この分離基準は、米国の原子力規制文書である R. G1. 75 Rev. 2 においてもエンドーズされており、我が国においても原子力プラントの配線分離の基準として活用してきている。

(参考)

IEEE384のトレイ蓋がない電源ケーブルの分離基準の体系で、電源ケーブルを燃焼させ、IEEE384の国内プラントへの適用性を念のために確認している。

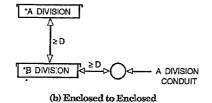
IEEE384の分離基準(トレイ蓋がない電源ケーブル)


垂直分離性確認試験(標準空間距離) 結果

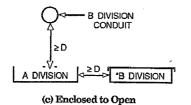
		残炎	時間		損傷	距離(cm)		別区分トレイ	
		バーナ		火源		別区分トレイ	ケーブル	備考	
		トレイ	トレイ	トレイ	上面シース	下面シース	下面緣線体	絶縁抵抗	
FR-CV	3分	15'	着火せず	75	0	0	0	2000MΩ以上	
M-SHVV	20分	0	着火せず	103	0	0	0	2000MΩ以上	·
cv	3分	27′	着火せず	全長 (200)	0	65	0	2000M Ω以上	
w	20分	18′ 15″	着火せず	136	0	101	57	2000MΩ以上	
CV*	3分	27′	着火せず	全長 (200)	0	0	0	2000MΩ以上	
W≑	20分	17' 50"	着火せず	160	0	75	0	2000MΩ以上	

404

	水平分質性確認試險結果										
	バーナ		残炎時間			シース	.損傷距離(別区分トレイケーブル			
ケーブ ル品名	燃焼時間	火源	上段	別区分	火源 トレイ	上段トレイ			別区分トレイ		備考
	lei	トレイ	トレイ	トレイ	トレイ	上面	下面	上面	下面	絶縁抵抗	
FR-CV	3分	29'	42'以上	着火せず	全長 (200)	130	全長 (200)	0	0	2000MΩ以上	
M- SHVV	3分	21' 04"	17′ 30″	着火せず	全長 (200)	190	全長 (200)	0	0	2000MΩ以上	
cv	3分	29'	32′	着火せず	全長 (200)	全長 (200)	全長 (200)	0	0	2000MΩ以上	
VV	3分	31' 00"	37′ 40″	着火せず	全長 (200)	全長 (200)	全長 (200)	0	0	2000MΩ以上	
CV*	3分	22′	17′	着火せず	全長 (200)	0	全長 (200)	0	0	2000MΩ以上	
VV*	3分	30' 34"	22' 43"	着火せず	全長 (200)	0	全長 (200)	0	0	2000МΩ以上	


(参考: IEEE384 基準)

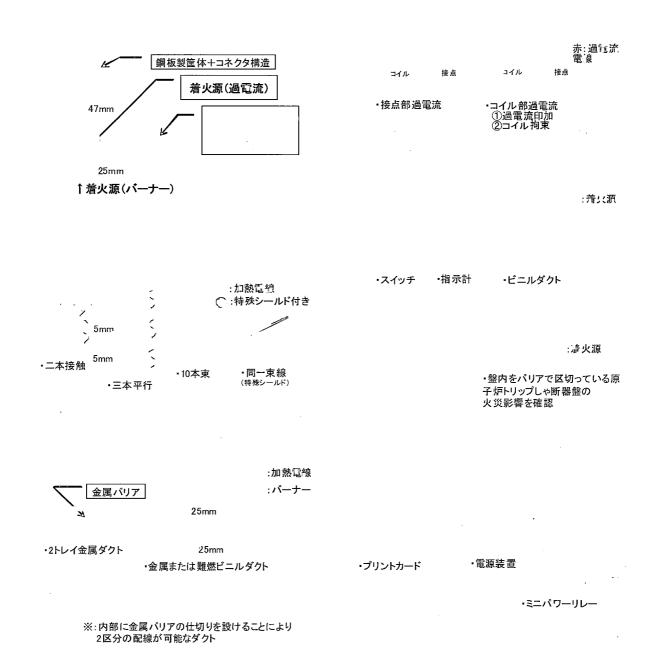
(OPEN to OPEN)


制御・計装ケーブル 水平 2.5cm、垂直 7.5cm 電力ケーブル 水平 0.9m、垂直 1.5m

(a) Open to Open

(ENCLOSED to ENCLOSED)

制御・計装ケーブル 水平 2.5cm、垂直 2.5cm 電力ケーブル 水平 2.5cm、垂直 2.5cm


(ENCLOSED to OPEN)

制御・計装ケーブル 水平 2.5cm、垂直 7.5cm 電力ケーブル 水平 0.9m、垂直 1.5m

制御盤内構成部品の燃焼試験

制御盤で使用している操作スイッチ、配線、配線ダクト、リレー等の構成部品の1つを過電流やバーナーで燃焼させた結果、一定の距離を確保した又は障壁で仕切られた周囲の部品は火災の影響を受けず、機能を維持することを確認している。

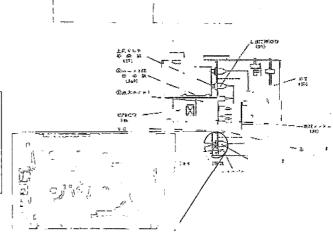
これらの結果から、同一制御盤内であっても、一定の距離を確保して構成部品を配置、又は障壁を設置することで、制御盤内での火災を想定しても、少なくとも1系統はその機能を失わないようにできる。

406

電気盤の電気火災の実証試験

電気盤の使用条件では、過電流による火災が発生しなかったため、盤内で油 を燃やして強制的に電気盤内の構成部品を燃焼させたところ、火災を発生させ た電気盤の外部に炎は出ず、隣接盤の機能は維持されることを確認した。

この結果から、電気盤での電気火災は、炎が盤外に出ないものとして扱う。


制御盤内油点火試験

	ベンチ盤	直立盤					
炎の状況	外部へ炎は出ず	外部へ炎は出ず					
『 <u>隣接盤</u> への影響 (絶縁抵抗: 試験前後)	短絡無し (前100MΩ ⇒ 後100MΩ)	短絡無し (前20MΩ⇒ 後20MΩ)					

動力盤内油点火試験

	M/C	P/C	C/C
炎の状況	外部へ炎は 出ず	同左	同左
隣接盤への 影響(絶縁抵 抗:試験前後)	短絡無し (前2000MΩ⇒ 後800MΩ)	短絡無し 〈前100MΩ → 後25MΩ)	短絡無し (前4MΩ → 後0.8MΩ)

本実証試験は、電源構成上予想される最大の拘束電流に相当する過電流では盤火災が発生しないことを確認したうえで、内部の構成部品に強制着火できる程度の可燃物(予備試験で確認した量)を用い、電気盤で起こりえる電気火災に近い状態を模擬したものである。

一方、米国 NUREG/CR-6850 で考慮された電気盤の燃焼試験(NUREG/CR-4527)は、着火源として盤内に多くの可燃物を入れるが、盤内ケーブルに着火・延焼するまでバーナーで加熱し、電気盤が燃焼したときの特性を評価することとされている。

このため、電源構成から考えると大飯3,4号機で発生する可能性のある電気盤火災は、上記実証試験と同様の態様になると考える。

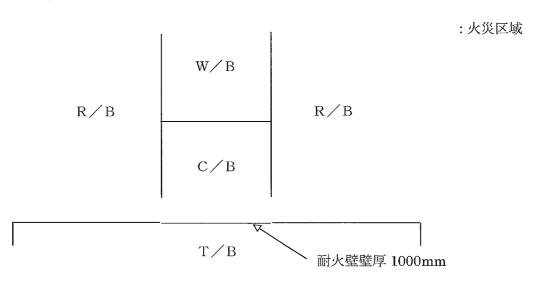
可燃性物質毎の単位発熱量表

番号	可燃物	単位発熱量	(MJ/kg)	単位発熱量	(kcal/kg)	根拠/備考
1	LPガス	50.4	MJ/kg	12033.9	kcal/kg	propane (FPH p.6-272)
2	プロパンガス	50.4	MJ/kg			propane (FPH p.6-272)
3	アセチレン	49.9	MJ/kg	11928.8	kcal/kg	acetylene (FPH p.6-270)
4	水素	12.7	MJ/m³	3025.8		hydrogen (FPH p.6-271)
5	エチレングリコール [kg]	19.2	MJ/kg	4586.5	kcal/kg	ethylene glycol (FPH p.6-271)
6	エチレンク・リコール [╎ス]		MJ/リットル			ethylene glycol (FPH p.6-271)
7	٦,٢		MJ/kg			rubber - butyl (FPH p.6-280)
8	ピニール		MJ/kg	11410.1	kcal/kg	polyethylene (FPH p.6-276)
9	ヘンシン	47.1	MJ/kg			naphtha (FPH p.6-280)
10	ホース		MJ/kg	11410.1	kcal/kg	polyethylene (FPH p.6-276)
11	ホ°リエチレン	47.7	MJ/kg			polyethylene (FPH p.6-276)
12	塩化ビニル		MJ/kg			vinyl chloride (FPH p.6-272)
13	活性炭		MJ/kg		kcal/kg	carbon (FPH p.6-270)
14	紙		MJ/kg			paper - news print (FPH p.6-280)
15	紙(m³)	16,154.0		3860898.7		820kg/m3(上質紙)で換算
16	壁紙(低未処理)		MJ/kg		kcal/kg	paper - news print (FPH p.6-280)
17	- <u>- 工机(PS)(A-1)</u> - 木材		MJ/kg		kcal/kg	wood - spruce (FPH p.6-280)
18			MJ/kg		kcal/kg	Corrugated cardboard boxes (FPH p6-280)
19	エホ。キシ		MJ/kg		kcal/kg	epoxy of bisphenol-A (FPH p.6-274)
20	オ。リウレタン		MJ/kg		kcal/kg	polyurethane (FPH p.6-278)
21	ポリエステル		MJ/kg		kcal/kg	polyester, unsaturated (FPH p.6-275)
22	ポリプロピレン		MJ/kg	11051.6		polypropylene (FPH p.6-277)
- 22	ホ ファロビック	70.2	IVIO/ Ng	11001.0	RCal/ Ng	hexafluoropropylene /
23	テフロン	77	MJ/kg	1840.3	kcal/kg	polytetrafluoroethylene copolymer
20	17-7	1.7	mo, ng	1010.0	inoui/ ng	(FPH p.6-274)
24	ナイロン	39.3	MJ/kg	9383 4	kcal/kg	nylon 12 (FPH p.6–275)
						polydimethylsiloxane
25	シリコン	25.3	MJ/kg	6034.9	kcal/kg	(silicone rubber) (FPH p.6-275)
26	アルコール	33.6	MJ/kg	8033.0	kcal/kg	n-propanol (FPH p.6-272)
27	シンナー		MJ/kg		kcal/kg	toluene (FPH p.6-272)
28	プラスチック		MJ/kg	11410.1		polyethylene (FPH p.6-276)
29	ポ [°] リ塩化ビニル		MJ/kg		kcal/kg	poly(vinyl chloride), flexible (FPH p.6-279)
30	ポリカーホ゛ネート		MJ/kg		kcal/kg	polycarbonate (FPH p.6-275)
24				·		acrylonitrile-butadiene styrene
31	ABS樹脂	39.8	MJ/kg	9522.0	kcal/kg	copolymer (FPH p.6-273)
32	EVA樹脂	35.6	MJ/kg	8515.8	kcal/kg	ethylene vinyl acetate (FPH p.6-274)
33	アクリル樹脂		MJ/kg		kcal/kg	polyethylmethacrylate (FPH p.6-276)
34	コ゛ム+ポリエチレン		MJ/kg		kcal/kg	polyethylene (FPH p.6-276)
35	ホ°リエチレン+紙		MJ/kg			polyethylene (FPH p.6-276)
36	ポッコチレン+綿+コ、ム	47.7	MJ/kg	11410.1		polyethylene (FPH p.6-276)
37	衣料(高)		MJ/kg		kcal/kg	acrylic fiber (FPH p6-280)
38	衣料(低)		MJ/kg		kcal/kg	cotton (FPH p6-280)
i i						cotton (FPH p6-280) +
39	衣料(低)+ゴム	33.1	MJ/kg	/911.1	kcal/kg	rubber - butyl (FPH p.6-280)
40	その他装置	47,740.0	MJ/m³	11410133.8	kcal/m³	(ポリエチレンの値を採用、1m³=1,000kgで換算)
41	その他装置		MJ/kg		kcal/kg	polyethylene (FPH p.6-276)
42	電エトラム [kg]		MJ/kg		kcal/kg	polyurethane (FPH p.6-278)
43	石油		MJ/kg		kcal/kg	gasoline (FPH p6-280)
44	 A重油		MJ/リットル			エネ庁、標準発熱量表
45	潤滑油		MJ/リットル	9608.0	kcal/リットル	も、わナイル、シリコンナイル、カーレン・ナイル、3名3美され、ガニコフ
46	グリス	30 0	MJ/kg	9319 9	kcal/kg	13、47月、保学光彩量表の周月油に机一りる 潤滑油協会より密度0.97g/cm3で潤滑油換算する
47	チャコールフィルタ		MJ/枚		kcal/kg	内有用協会より包度0.97g/cm3で用有用授算する chacoal(FPH FPH p6-280)
48	ヘハ。フィルタ		MJ/枚		kcal/枚	cellulose triacetate filber(FPH p6-280)
49	ラフフィルタ		MJ/枚		kcal/枚	cellulose acetate filber(FPH p6-280)
49	JJJ1N7	/4.3	IVIO/ 作X	1/600.9		Cellulose acetate filber(FPH po-280)

※FPH:NFPAのFire Protection Handbook Twentieth Edition

タービン建屋からの火災の影響について

1. タービン建屋 (T/B) の等価火災時間

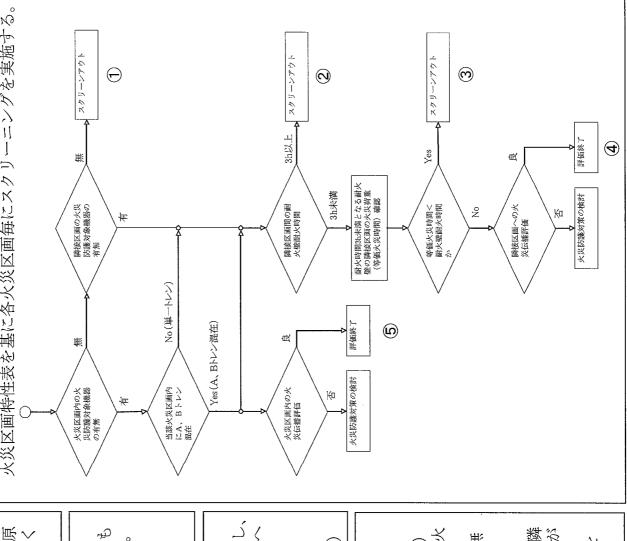

設置されている主な機器	火災荷重	等価火災時間
	$(\times 10^3 \text{kcal/m2})$	(h) ※
(T/B1F)		
・電動主給水ポンプモータ		
・タービン動主給水ポンプ用ブースタ		
ーポンプモータ		
・主タービン用主油タンク		
・主給水ポンプ駆動タービン用油タン		
ク		
(T/B2F)	470.4	0.5
・パワーセンタ	478.4	2.5
・コントロールセンタ		
•密封油処理装置		
(T/B3F)		
・発電機		
・励磁機		
(共通)		
・ケーブルトレイ		

※:等価火災時間は 0.5h 刻みで切り上げ表示している。

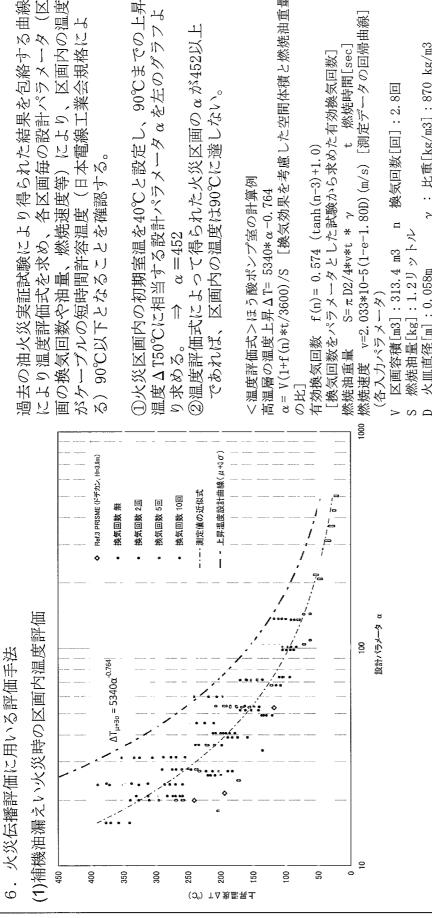
2. 評価

火災区域とT/B間の耐火壁の壁厚は1000mm あり、その耐火時間は3h以上である。T/Bの等価火災時間<耐火壁の耐火時間のため、火災区域はT/Bからの火災影響はない。

(火災区域とT/Bの関係)


添付資料-6

/2 火災影響評価結果のまとめ(1、 4号機 大飯3,


5. スクリーニング

火災区画特性表を基に各火災区画毎にスクリーニングを実施する。

- 子炉の高温停止、低温停止に関わる安全機能が少なく 原子力発電所内の各火災区画毎に火災を想定し、 目的
 - とも1つ以上確保されることを確認する。
- 原子炉の安全機能に影響を及ぼす可能性がある最も 過酷な火災(具体的には以下のとおり)を想定する。 大災の想定
 - ○補機から漏えいした油による火災
- ○電力ケーブルトレイのケーブル過電流による火災 の大災 (電压440V以上) 〇電気盤
- 原子炉の高温停止、低温停止に必要な系統を抽出し、 さらに火災による誤動作を想定した場合の起因事象へ ケーブルの特定 の対応に必要な系統も追加して、特定 火災防護対象機器、
 - 〇高温停止:安全保護系、原子炉停止系等
- ○低温停止:ほう酸注入系、余熱除去系等
- (1 次冷却材减压等) ○誤作動対応:南圧注入ポンプ
- 評価のために各火災区画毎の情報を整理する。 4. 火災区画特性表の作成
- ○水災源の特定と火災シナリオ(影響を受ける機器) ○等価火災時間:区画内の可燃性物質の総発熱量を火
 - 災継続時間に換算したもの
- 伝播の可能性有無 ○隣接区画との障壁の耐火能力※、
 - 〇火災感知、消火手段
- 上回っていれば、隣接への影響はない。また、隣接区画側の等価火災時間よりも障壁の耐火能力が **隣接区画との障壁の耐火能力が等価火災時間を** 上回っていれば隣接からの影響を受けない。 \uparrow
 - 壁厚が150mm以上であれば、3時間の耐火能力を 10 有ず *

2/**3** 火災影響評価結果のまとめ(2、 4号機 大飯3,

画の換気回数や油量、燃焼速度等)により、区画内の温度 ①火災区画内の初期室温を40℃と設定し、90℃までの上昇 温度 Δ T50 Cに相当する設計パラメータ α を左のグラフよ がケーブルの短時間許容温度(日本電線工業会規格によ により温度評価式を求め、各区画毎の設計パラメータ る)90°C以下となることを確認する。 $\alpha = 452$

②温度評価式によって得られた火災区画のαが452以上 であれば、区画内の温度は90℃に達しない。

α= V(1+f(n)*t/3600)/S [換気効果を考慮した空間体積と燃焼油重量 有効換気回数 f(n)= 0.574 (tanh(n-3)+1.0) 高温層の温度上昇 V L= 5340*α-0.764

[測定データの回帰曲線] 燃焼時間[sec] [梅気回数をパラメータとした試験から求めた有効検気回数] 燃焼速度 v=2.033*10-5(1-e-1.80D)(m/s) $S = \pi D2/4*v*t * \gamma$

換気回数[回]:2.8回 Д

火皿直径[m]:0.058m

y : 比重[kg/m3]:870 kg/m3

レイの離隔距離が米国電気電子工学学会(IEEE)の規格384に規定されている水平、垂直の離隔距離以上であることを確認した。 安全系の異トレンのケーブルト ケーブルが過電流火災時に他のトレイのケーブルに伝播・影響しないことを確認するため、 (3)電気盤(440V以上)の火災時の盤外への影響

(2)ケーブル過電流火災時のトレイ間離隔距離

電気盤の火災は盤内に限定される 当該の盤は機能喪失するものとするが、 各火災区画毎に電気盤を抽出したが、 盤外には影響しないことを確認した。 何のため、 とから、

7. 評価結果

4号機の全ての火災区画について評価を実施した結果、 低温停止に必要な系統が少なくとも1つ以上は確保されることを確認した。 原子力発電所の内部火災影響評価ガイド(案)に基づき、大飯3, 原子炉の高温停止、