平成23年東北地方太平洋沖地震の知見等を踏まえた 原子力施設への地震動及び津波の影響に関する安全性評価 のうち高浜発電所周辺斜面の安定性評価報告書

平成24年6月21日

関西電力株式会社

別紙

1.	まえ	えがき	·1
2.	評値	西方針	$\cdot 2$
	2.1	一般事項	$\cdot 2$
	2.2	評価方法	$\cdot 2$
	(1)	9 解析手法	$\cdot 2$
	(2)	0 入力地震動	$\cdot 2$
	(3)	• 評価内容	$\cdot 2$
3.	1•	2 号機周辺斜面の安定性評価	$\cdot 7$
	3.1	周辺斜面の状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot 7$
	3.2	評価斜面の選定	$\cdot 7$
	3.3	評価条件	$\cdot 7$
	(1)	● 解析モデル	$\cdot 7$
	(2)	解析用物性值	$\cdot 7$
	(3)	• 地下水位	$\cdot 7$
	(4)	・ 想定すべり面	$\cdot 7$
	3.4	評価結果	15
4.	3•	4 号機周辺斜面の安定性評価	20
	4.1	周辺斜面の状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
	4.2		
		評価斜面の選定	20
	4.3	評価斜面の選定 ····································	20 20
	4.3 (1)	評価斜面の選定 ······ 評価条件 ······ 解析モデル ·····	20 20 20
	4.3 (1) (2)	評価斜面の選定 評価条件 解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20 20 20 20
	4.3 (1) (2) (3)	評価斜面の選定 評価条件 解析モデル 解析用物性値 地下水位	20 20 20 20 20
	4.3 (1) (2) (3) (4)	評価斜面の選定 評価条件 解析モデル 解析用物性値 地下水位 想定すべり面	20 20 20 20 20 20 21
	4.3 (1) (2) (3) (4) 4.4	評価斜面の選定 評価条件 解析モデル 解析用物性値 地下水位 想定すべり面 評価結果	20 20 20 20 20 21 29
	4.3 (1) (2) (3) (4) 4.4 4.5	評価斜面の選定 評価条件 解析モデル 解析用物性値 地下水位 想定すべり面 評価結果 山頂部の挙動評価	20 20 20 20 20 20 21 29 37
	$\begin{array}{c} 4.3 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.4 \\ 4.5 \\ (1) \end{array}$	評価斜面の選定 評価条件 解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 20 20 20 20 20 20 21 29 37 37
	$\begin{array}{c} 4.3 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.4 \\ 4.5 \\ (1) \\ (2) \end{array}$	評価斜面の選定 評価条件 解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 20 20 20 20 20 20 20 21 29 37 37 37
	$\begin{array}{c} 4.3 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.4 \\ 4.5 \\ (1) \\ (2) \\ (3) \end{array}$	評価斜面の選定 評価条件 解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 20 20 20 20 20 21 29 37 37 37 37
	$\begin{array}{c} 4.3 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.4 \\ 4.5 \\ (1) \\ (2) \\ (3) \\ (4) \end{array}$	評価斜面の選定 評価条件 解析モデル 解析用物性値 地下水位 想定すべり面 評価結果 山頂部の挙動評価 評価概要 評価手法 評価条件 評価条件	 20 20 20 20 20 20 21 29 37 37 37 37 37 38
	$\begin{array}{c} 4.3 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.4 \\ 4.5 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.6 \end{array}$	評価斜面の選定 評価条件 解析モデル 解析用物性値 地下水位 地下水位 地下水位 加度部の挙動評価 評価結果 評価概要 評価手法 評価条件 評価条件 評価結果	 20 20 20 20 20 20 21 29 37 37 37 37 38 52
	$\begin{array}{c} 4.3 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.4 \\ 4.5 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.6 \\ (1) \end{array}$	評価斜面の選定 評価条件 解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 20 20 20 20 20 21 29 37 37 37 37 38 52 52
	$\begin{array}{c} 4.3 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.4 \\ 4.5 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.6 \\ (1) \\ (2) \end{array}$	 評価斜面の選定 評価条件 解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 20 20 20 20 20 20 21 29 37 <
	$\begin{array}{c} 4.3 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.4 \\ 4.5 \\ (1) \\ (2) \\ (3) \\ (4) \\ 4.6 \\ (1) \\ (2) \\ (3) \end{array}$	 評価斜面の選定 評価条件 解析モデル 解析用物性値 地下水位 想定すべり面 評価結果 山頂部の挙動評価 評価概要 評価手法 評価結果 山頂部の変位量評価 概要 評価手法 評価手法 評価手法 評価手法 評価条件 	 20 20 20 20 20 20 21 29 37 <

1. まえがき

当社は、平成18年9月19日付けで原子力安全委員会により「発電用原 子炉施設に関する耐震設計審査指針」が改訂されたことに伴い、原子力安全・ 保安院(以下「保安院」という。)による「「発電用原子炉施設に関する耐 震設計審査指針」等の改訂に伴う既設発電用原子炉施設の耐震安全性の評価 等の実施について」(平成18・09・19原院第6号平成18年9月20日) に基づき、改訂された耐震指針に照らした既設発電用原子炉施設の耐震安全 性評価を実施している。

これまでに,活断層評価,基準地震動 Ssの策定及び主要な施設の耐震安全 性評価については,平成 20 年 3 月 31 日に保安院に耐震安全性評価結果中間 報告書を,平成 21 年 3 月 31 日に中間報告書(追補版)を提出し,国による 審議を経て,平成 22 年 11 月 25 日に保安院に「耐震安全性評価結果(原子 力安全・保安院での審議状況の反映)」を提出し,平成 22 年 11 月 29 日に 「耐震安全性に係る評価について(基準地震動の策定及び主要な施設の耐震 安全性評価)」を受領した。

その後,平成23年3月11日に発生した平成23年東北地方太平洋沖地震 に伴い,保安院より「平成23年東北地方太平洋沖地震の知見等を踏まえた 原子力施設への地震動及び津波の影響に関する安全性評価の実施について

(指示)」(平成 23・11・02 原院第4号 平成 23 年 11 月 11 日)を受け, 「平成 23 年東北地方太平洋沖地震の知見等を踏まえた原子力施設への地震 動及び津波の影響に関する安全性評価 実施計画書」(以下「計画書」とい う。)を平成 23 年 11 月 18 日に保安院に提出した。

本報告書は、計画書に基づき、高浜発電所周辺斜面の安定性評価結果についてとりまとめたものである。

2. 評価方針

2.1 一般事項

耐震安全上重要な機器・配管系を内包する建物・構築物(以下「対象施設」 という。)の周辺斜面について、基準地震動 Ssによる地震力に対して、対象 施設の安全機能に重大な影響を与えるような崩壊を起こさないことを確認す るため、対象施設と周辺斜面の離間距離に基づき選定した斜面を評価対象と し、すべりに対する評価を行う。

- 2.2 評価方法
 - (1) 解析手法

基準地震動 Ss に対する地震応答解析を二次元動的有限要素法解析により行う。地震応答解析は、周波数応答解析手法を用い、等価線形化法によ

りせん断弾性係数および減衰定数のひずみ依存性を必要に応じて考慮する。

地震時の応力は,静的解析による常時応力と,地震応答解析による動的 応力を重ね合わせることにより求める。常時応力は地盤の自重計算により 求まる初期応力,建屋基礎掘削に伴う解放力および建屋・埋戻土の荷重を 考慮し,動的応力は水平地震動および鉛直地震動による応答の同時性を考 慮して求める。

周辺斜面の安定性評価フローを第2.2-1図に示す。

常時応力を算定する静的解析における境界条件は,モデル下端を固定境 界,側方を鉛直ローラ境界とする。また,動的解析における境界条件は, モデル下端を粘性境界,側方をエネルギー伝達境界とする。境界条件を第 2.2-2 図に示す。

(2) 入力地震動

入力地震動は,解放基盤表面で定義される基準地震動 S_sを一次元波動論 によって地震応答解析モデルの入力位置で評価したものを用いる。入力地 震動の考え方を第2.2-3 図に,基準地震動 S_sの最大加速度を第2.2-1表に, 加速度時刻歴波形と加速度応答スペクトルを第2.2-4 図に示す。

(3) 評価内容

すべりに対する安定性は、想定すべり面におけるすべり安全率により評価する。すべり安全率は、想定したすべり面上の応力状態をもとに、すべり面上のせん断抵抗力の和をすべり面上のせん断力の和で除して求める。 引張応力が発生した要素については、すべり面に対して直応力が引張応力の場合には強度定数を0とし、圧縮応力の場合は残留強度を用いる。また、 せん断強度に達した要素では残留強度を用いる。

なお,3・4号機周辺斜面には補強工(連続地中壁,抑止杭)が設置され ており,これらのすべり抵抗力も考慮して評価を行う。

第2.2-1図 周辺斜面の安定性評価フロー

(a) 静的解析時

(b) 動的解析時

第 2.2-2 図 境界条件

第2.2-3 図 入力地震動の考え方

第2.2-1表 基準地震動 Ss の最大加速度

基準地	震動 Ss	最大加速度 (cm/s²)
水平方向	S_{S-H}	550
鉛直方向	S_{S-V}	367

第2.2-4図 基準地震動 Ss の加速度時刻歴波形と加速度応答スペクトル

- 3. 1・2 号機周辺斜面の安定性評価
- **3.1** 周辺斜面の状況

第3.1-1図に1・2号機周辺敷地平面図を示す。

周辺斜面は,原子炉建屋の背後に位置し,斜面高さはおよそ160m である。 斜面の地質は,音海流紋岩,内浦層群名島火山岩部層(安山岩)及び内浦層 群神野浦頁岩部層(泥岩)からなる。

3.2 評価斜面の選定

「原子力発電所耐震設計技術指針 JEAG4601-2008」(以下

「JEAG4601-2008」という。)では、安定性評価の対象とすべき斜面は斜面法尻と対象施設の離間距離が約50m以内の斜面、あるいは斜面高さの約1.4倍以内の斜面としている。

上記に基づき,原子炉建屋の背後斜面を評価斜面として選定し,基準地震動 Ss による地震力に対する安定性評価を行う。

- 3.3 評価条件
 - (1) 解析モデル

評価斜面のうち,斜面形状および斜面高さを考慮し,動的有限要素法解 析による評価を実施する断面として,G-G'断面を選定する。解析用モ デルには地盤および原子炉補助建屋,タービン建屋を考慮する。解析用建 屋モデルは,それぞれの多質点系モデルを基に作成する。

G-G'断面の地質断面図を第3.3-1図に,解析用要素分割図を第3.3-2 図に示す。

(2) 解析用物性值

解析用物性値は,既往の試験結果および発電用原子炉施設に関する耐震 設計審査指針の改訂に伴い新たに実施した各種試験結果に基づき設定する。 解析用物性値設定の考え方を第3.3-1表に,解析用物性値を第3.3-2表, 第3.3-3 図~第3.3-4 図に示す。

(3) 地下水位

解析用地下水位は,建屋基礎部については,建屋基礎底面に設定する。 斜面部については CL 級岩盤上端に設定する。その他の部分については地 表面に設定する。

(4) 想定すべり面

想定すべり面は,斜面部の岩級区分と応力状態を考慮してすべり面法に より絞り込んだすべり面とする。

第 3.3-2 図 解析用要素分割図(G-G'断面)

第3.3-1表 解析用物性値設定の考え方

来 近 東	财政化致	慣用値	慣用値	慣用値	繰返し三軸試験	繰返し三軸試験	性値設定の考え方
形特性	動ポアソン比	PS検層より算出	PS検層より算出	PS検層より算出 (※超音波速度試 験より算出)	PS検層より算出 (※頁岩D級の試 験結果を使用)	PS検層より算出	※泥岩の物
動的変	せん断弾性係数	PS 検層と 単位体積重量 より算出	HR 中国 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	日常の注重また。 日本 日本 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(出業の注重手の) (出業の注重主要) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	PS検層と 単位体積重量 より算出	
形特性	静ポアソン比	岩石試驗	織涅卫岩	織涅卫岩	慣用値 (※三軸圧縮試験)	慣用値	
静的変	静弹性係数	平板載荷試験	平板載荷試験	平板載荷試驗 (※三軸圧縮試驗)	備易せん断試験 (※三軸圧縮試験)	簡易せん断試験	
定数	残留強度	CM級の試験結果 を使用	岩盤せん断試験	岩盤せん断試験 (※三軸圧縮試験)	簡易せん断試験 (※三軸圧縮試験)	簡易せん断試験	
通度	せん断強度 内部摩擦角	岩盤せん断試験	岩盤せん断試験	岩盤せん断試験 (※三軸圧縮試験)	簡易せん断試験 (※三軸圧縮試験)	簡易せん断試験	
物理定数	単位体積重量	室内物理試験	室內物理試驗	室内物理試験	室内物理試験	室内物理試験	
		CH級以上	CM級	CL級	D級	盛土,沖積層	

	減 表 定数 (ン比	2	0.03	0.03	0.03	h~ γ 曲線は 第3.3-3図参照	0.03	0.03	0.03	h~ γ 曲線は 第3.3-3図参照	0.03	0.03	h~ y 曲線は 第3.3-3図参照	h~ ^y 曲線は 第3.3-4図参照
芝形特性	動ポアン		0.32	0.37	0.43	0.38	0.32	0.33	0.36	0.38	0.30	0.34	0.40	0.48
動的逐	初期せん断弾性 係数 (N/mm ²)	係数(N/mm ²)	11,000	2,400	870	320 G/G ₀ ~ γ 曲線は 第3.3-3図参照	9,000	4,300	1,200	320 G/G ₀ ~ γ 曲線は 第3.3-3図参照	16,000	1,700	650 G/G ₀ ~ γ 曲線は 第3.3-3図参照	140 G/G ₀ ~ヶ曲線は ~2.5.5.5.5.1
形特性	静ポアソン比		0.22	0.22	0.22	0.45	0.22	0.22	0.22	0.45	0.22	0.48	0.48	0.45
静的変	静弹性係数 (N/mm ²)	(N/mm^2)	4,400	3,400	006	160	4,400	3,400	006	160	4,400	830	300	25
物理特性	単位体積重量 (kN/m ³)	(kN/m^3)	24.8	24.8	24.8	17.8	24.8	24.8	24.8	17.8	24.8	18.5	17.2	15.3
		/	CH級以上	CM級	CL級	D級	CH級以上	CM級	CL級	D級	CH級以上	CL級	D級	中積層
	/				流衩吊			-	女口吊		頁岩	ļ	影	盛土, 衤

第3.3-2表(a) 解析用物性值(物理特性,変形特性)

			強度特性		強度特性	ミ (地盤物性のばらつ)	き考慮)
/		せん断強度 (N/mm ²)	内部摩擦角 (度)	残留強度 (N/mm ²)	せん断強度 (N/mm ²)	内部摩擦角 (度)	残留強度 (N/mm ²)
	CH級以上	2.9	61	$3.73\sigma_{\rm n}^{0.50}$	2.5	19	$3.28\sigma_n^{0.50}$
	CM級	2.3	60	$3.73\sigma_{\rm n}^{0.50}$	1.2	60	$3.28\sigma_n^{0.50}$
流紋岩	CL級	1.3	50	$2.16\sigma_{\rm n}^{0.45}$	0.6	50	$1.76\sigma_n^{0.45}$
	D級	0.09	38	σ _n •tan38°	0.08	38	$\sigma_{\rm n} \cdot { m tan}38^{\circ}$
	CH級以上	2.9	61	$3.73\sigma_{\rm n}^{0.50}$	2.5	19	$3.28\sigma_n^{0.50}$
-	CM級	2.3	60	$3.73\sigma_{\rm n}^{0.50}$	1.2	60	$3.28\sigma_n^{0.50}$
<u> </u>	CL級	1.3	50	$2.16\sigma_{\rm n}^{0.45}$	0.6	50	$1.76\sigma_n^{0.45}$
	D級	0.11	35	$\sigma_{ m n} \cdot an 35^{\circ}$	0.10	35	$\sigma_{ m n} \cdot an 35^{\circ}$
頁 岩	CH級以上	2.9	61	$3.73\sigma_{\rm n}^{0.50}$	2.5	61	$3.28\sigma_n^{0.50}$
ļ	CL級	1.7	8	$0.95 + \sigma_n \cdot \tan 8^{\circ}$	1.3	8	$0.79+\sigma_{\rm n}\cdot { m tan8^\circ}$
活	D級	0.53	ũ	$0.43 + \sigma_n \cdot \tan 5^{\circ}$	0.48	5	$0.39+\sigma_{\rm n}\cdot { m tan5}^{\circ}$
盛土,	沖積層	0.09	28	$\sigma_{ m n} \cdot an 28^{\circ}$	0.07	28	$\sigma_{\rm n} \cdot \tan 28^{\circ}$
						$\sigma_n ~(N/mm^2) ~:~ \exists$	ドベり面に対する直応力

第3.3-2表(b) 解析用物性值(強度特性)

第3.3-3 図 せん断弾性係数および減衰定数のひずみ依存特性 (D級)

第3.3-4 図 せん断弾性係数および減衰定数のひずみ依存特性 (盛土・沖積層)

3.4 評価結果

想定すべり面におけるすべり安全率時刻歴を第 3.4-1 表に示す。最小すべ り安全率は 2.5 であり、「JEAG4601-2008」に示される評価基準値 1.2 を上 回ることから、すべりに対して十分な安定性を有している。

また,要素ごとの局所安全係数を第3.4-1図に示す。斜面部の要素におい て引張応力が発生した要素があるが小さな範囲にとどまっており,すべりに 対して問題となるものではないことから,斜面は地震時に発生する応力に対 して安定性を有している。

なお、念のため地盤物性のばらつきを考慮し、地盤物性のうちせん断強度 について「平均値-1.0×標準偏差(σ)」とした結果のうち最小すべり安全 率を第 3.4-2 表に、また基準地震動 S₈について、正負を反転して解析を行っ た結果のうち最小すべり安全率を第 3.4-3 表に示す。これらの最小すべり安 全率は評価基準値 1.2 を上回ることから、地盤物性のばらつきや基準地震動 S₈の反転を考慮しても斜面はすべりに対して十分な安定性を有している。

以上より、1・2号機周辺斜面が基準地震動 Ss による地震力に対して対象 施設の安全機能に重大な影響を与えるような崩壊を起こさないことを確認した。

第3.4-1表 すべり安全率時刻歴

斜面部拡大図

第3.4-2表 地盤物性のばらつきを考慮したすべり安全率一覧表

第3.4-3表 Ssの反転を考慮したすべり安全率一覧表

- 4. 3・4 号機周辺斜面の安定性評価
- 4.1 周辺斜面の状況

第4.1-1図に3・4号機周辺敷地平面図を示す。

周辺斜面は,原子炉建屋の背後に位置し,斜面高さはおよそ130mである。 斜面の地質は,音海流紋岩及び内浦層群今戸鼻層(安山岩及び凝灰角礫岩) から構成される。

4.2 評価斜面の選定

「JEAG4601-2008」では、安定性評価の対象とすべき斜面は斜面法尻と 対象施設の離間距離が約 50m 以内の斜面、あるいは斜面高さの約 1.4 倍以内 の斜面としている。

上記に基づき,原子炉建屋の背後斜面を評価斜面と選定し,基準地震動 Ss による地震力に対する安定性評価を行う。

4.3 評価条件

(1) 解析モデル

評価斜面のうち,斜面形状および斜面高さを考慮し,動的有限要素法解 析を実施する断面として, E-E'断面を選定する。解析用モデルには地盤 および原子炉建屋,原子炉補助建屋,タービン建屋,また斜面補強工とし て設置されている連続地中壁,抑止杭を考慮する。解析用建屋モデルは, それぞれの多質点系モデルを基に作成する。また連続地中壁はソリッド要 素で,抑止杭はビーム要素でモデル化する。

E-**E**'断面の地質断面図を第4.3-1 図に,解析用要素分割図を第4.3-2 図に示す。

(2) 解析用物性值

解析用物性値は,地盤については既往の試験結果および発電用原子炉施 設に関する耐震設計審査指針の改訂に伴い新たに実施した各種試験結果に 基づき設定する。解析用物性値設定の考え方を第4.3-1表に,解析用物性 値を第4.3-2表,第4.3-3図~第4.3-4図に示す。

斜面補強工の解析用物性値については、連続地中壁は鉄筋コンクリート 造であり、コンクリートの剛性とせん断強度を用いる。抑止杭は鋼管とH 鋼、中詰めモルタルで構成されており、これらの剛性、および鋼管とH鋼 の鋼材の抵抗力を考慮する。

(3) 地下水位

解析用地下水位は,建屋基礎部については,建屋基礎底面に設定する。 斜面部については CL 級岩盤上端に設定する。その他の部分については地 表面に設定する。 (4) 想定すべり面

想定すべり面は,斜面部の岩級区分と応力状態を考慮して,すべり面法 により絞り込んだすべり面とする。また当該斜面に設置されている補強工 も考慮し,補強工を通るすべり面,補強工を通らないすべり面を設定する。

200 m

第 4.3-2 図 解析用要素分割図(E-E'断面)

第4.3-1表 解析用物性値設定の考え方

 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
Minie像月 験 岩盤せん断試験 CM級の試験結果 平板載荷試験
験 岩盤せん断試験 岩盤せん断試験 平板載荷試影
験 岩盤せん断試験 岩盤せん断試験 平板載荷試測
験 簡易せん断試験 簡易せん断試験 簡易せん断試
験 簡易せん断試験 簡易せん断試験 簡易せん断試
験 一面せん断試験 一面せん断試験 D級の試験結 を使用

CH		物理特性 単位体積重量	静弹性係数	 手部 サポアソン比 	動的変行初期せん断弾性	形特性 動ポアソン比	减衰定数
	殺以上	(kN/m^3) 24.8	(N/mm^2) 4.400	0.22	係数(N/mm ⁴) 11.000	0.32	0.03
	,M級	24.8	3,400	0.22	2,400	0.37	0.03
	儿級	24.8	006	0.22	870	0.43	0.03
	D級	17.8	160	0.45	320 G/G₀~γ曲線は第4.3-3図参照	0.38	h~ ^y 曲線は 第4.3-3図参照
CH)	級以上	24.8	4,400	0.22	9,000	0.32	0.03
C	'M級	24.8	3,400	0.22	4,300	0.33	0.03
	儿級	24.8	006	0.22	1,200	0.36	0.03
1	D級	17.8	160	0.45	320 G/G ₀ 〜ッ曲線は第4.3-3図参照	0.38	h~ ^y 曲線は 第4.3-3図参照
CH)	級以上	24.8	4,400	0.22	22,000	0.27	0.03
C	'M級	24.8	3,400	0.22	11,000	0.32	0.03
繰出 C	儿級	24.8	006	0.22	3,200	0.39	0.03
1	D級	17.8	160	0.45	800 G/G ₀ 〜ッ曲線は第4.3-3図参照	0.43	h~ ^y 曲線は 第4.3-3図参照
CH)	級以上	24.8	4,400	0.22	12,000	0.32	0.03
C.	'M級	24.8	3,400	0.22	2,400	0.37	0.03
C	儿級	24.8	006	0.22	870	0.43	0.03
d CH)	級以上	24.8	4,400	0.22	16,000	0.30	0.03
(H)	級以上	24.8	4,400	0.22	16,000	0.34	0.03
C C	'M級	24.8	3,400	0.22	4,300	0.33	0.03
式 成部) C	儿級	24.8	006	0.22	970	0.33	0.03
I	D級	17.8	160	0.45	320 G/G ₀ ~ヶ曲線は第4.3-3図参照	0.38	h~ ^y 曲線は 第4.3-3図参照
变成部) CH _ň	級以上	24.8	4,400	0.22	16,000	0.30	0.03
i層,新期扇状月 よび崖錐堆積サ	也堆積物 物	15.3	25	0.45	140 G/G ₀ ~ y 曲線は第4.3-4図参照	0.48	h~ ^y 曲線は 第4.3-4図参照
破砕帯		17.7	160	0.33	320 G/G ₀ ~ヶ曲線は第4.3-3図参照	0.38	h~ ^y 曲線は 第4.3-3図参照

	き考慮)	残留強度 (N/mm ²)	$3.280_{-0.50}$	$3.28\sigma_n^{0.50}$	$1.76\sigma_{n}^{0.45}$	$\sigma_{ m n} \cdot an 38^{\circ}$	$3.28 \sigma_{ m n}^{0.50}$	$3.28\sigma_{ m n}^{0.50}$	$1.76\sigma_n^{0.45}$	$\sigma_{ m n} \cdot an 35^{\circ}$	$3.28\sigma_{\rm n}^{0.50}$	$3.28\sigma_{ m n}^{0.50}$	$1.76\sigma_n^{0.45}$	$\sigma_{ m n} \cdot an 38^{\circ}$	$3.28 \sigma_{ m n}^{0.50}$	$3.28\sigma_{ m n}^{0.50}$	$1.76\sigma_{ m n}^{0.45}$	$3.28\sigma_{ m n}^{0.50}$	$3.28\sigma_{ m n}^{0.50}$	$3.28\sigma_{ m n}^{0.50}$	$1.76\sigma_n^{0.45}$	$\sigma_{\rm n} \cdot { m tan}38^{\circ}$	$3.28 \sigma_{ m n}^{0.50}$	$\sigma_n \cdot \tan 28^\circ$	$\sigma_{ m n} \cdot an 34^{\circ}$	-べり面に対する直応力
	: (地盤物性のばらし)	内部摩擦角 (唐)	<u>(</u>) 61	60	50	38	61	60	50	35	61	60	50	38	61	60	50	61	61	60	50	38	61	28	34	$\sigma_n (N/mm^2) : \vec{\uparrow}$
鱼度特性)	強度特性	せん断強度 (N/mm ²)	2.5	1.2	0.6	0.08	2.5	1.2	0.6	0.10	2.5	1.2	0.6	0.08	2.5	1.2	0.6	2.5	2.5	1.2	0.6	0.08	2.5	0.07	0.08	
解析用物性值(引		残留強度 (N/mm ²)	$3.73_{0.50}$	$3.73\sigma_n^{0.50}$	$2.16\sigma_{\rm n}^{-0.45}$	$\sigma_{\rm n} \cdot { m tan38^\circ}$	$3.73\sigma_{\rm n}^{0.50}$	$3.73\sigma_{\rm n}^{0.50}$	$2.16\sigma_{\rm n}^{0.45}$	$\sigma_{ m n}\cdot an 35^{\circ}$	$3.73\sigma_{\rm n}^{0.50}$	$3.73\sigma_{ m n}^{0.50}$	$2.16\sigma_n^{0.45}$	$\sigma_{\rm n} \cdot { m tan38}^{\circ}$	$3.73\sigma_{\rm n}^{0.50}$	$3.73\sigma_{ m n}^{0.50}$	$2.16\sigma_{\rm n}^{0.45}$	$3.73\sigma_{ m n}^{0.50}$	$3.73\sigma_{ m n}^{0.50}$	$3.73\sigma_{ m n}^{0.50}$	$2.16\sigma_n^{0.45}$	$\sigma_{\rm n} \cdot an38^{\circ}$	$3.73\sigma_{\rm n}^{0.50}$	$o_{ m n} \cdot an28^{\circ}$	$\sigma_{ m n} \cdot angle 34^{\circ}$	
4.3-2 表 (b)	強度特性	内部摩擦角 (唐)	61	60	50	38	61	60	50	35	61	60	50	38	61	60	50	61	61	60	50	38	61	28	34	
第		せん断強度 (N/mm ²)	2.9	2.3	1.3	0.09	2.9	2.3	1.3	0.11	2.9	2.3	1.3	0.09	2.9	2.3	1.3	2.9	2.9	2.3	1.3	0.09	2.9	0.09	0.09	
			CH級以上	CM級	CL級	D級	CH級以上	CM級	CL級	D級	CH級以上	CM級	CL級	D殺	CH級以上	CM級	CL級	CH級以上	CH級以上	CM級	CL級	D級	CH級以上	扇状地堆積物 註堆積物		
		/			流紋岩				安山岩				石英閃緑岩		日日	流秋石頃 臨床出		貢岩		北な北	(接触変成部)		頁岩(接触変成部)	盛土,沖積層,新期 および崖錐	破砕	

第4.3-3 図 せん断弾性係数および減衰定数のひずみ依存特性 (D級,破砕帯)

第4.3-4 図 せん断弾性係数および減衰定数のひずみ依存特性 (盛土,沖積層,新期扇状地堆積物及び崖錐堆積物)

4.4 評価結果

想定すべり面におけるすべり安全率時刻歴を第4.4-1表に示す。最小すべり安全率は1.6であり、「JEAG4601-2008」に示される評価基準値1.2を上回ることから、すべりに対して十分な安定性を有している。

また,要素ごとの局所安全係数を第4.4-1 図に示す。斜面部の要素におい てせん断強度に達した要素や引張応力が発生した要素があるが,小さな範囲 にとどまっており,すべりに対して問題となるものではないことから,斜面 は地震時に発生する応力に対して安定性を有している。

なお、念のため地盤物性のばらつきを考慮し、地盤物性のうちせん断強度 について「平均値-1.0×標準偏差(σ)」とした結果のうち最小すべり安全 率を第4.4-2表に、また基準地震動 S₈について、正負を反転して解析を行っ た結果のうち最小すべり安全率を第4.4-3表に示す。これらの最小すべり安 全率は評価基準値1.2を上回ることから、地盤物性のばらつきや基準地震動 S₈の反転を考慮しても斜面はすべりに対して十分な安定性を有している。 第 4.4-1 表 (a) すべり安全率時刻歴

第 4.4-1 図(b) 要素ごとの局所安全係数(時刻:18.09 秒) 斜面部拡大図

第4.4-2表(a) 地盤物性のばらつきを考慮したすべり安全率一覧表

第4.4-2表(b) 地盤物性のばらつきを考慮したすべり安全率一覧表

第4.4-3表(a) Ssの反転を考慮したすべり安全率一覧表

すべり面 番号	すべり面形状	S _S 反転考慮	最小すべり 安全率
5		反転なし (再掲)	10.7 (12.49秒)
5	A A A A A A A A A A A A A A A A A A A	水平反転 鉛直反転	10.4 (22.03秒)
凡例		率の最小値()内は発生時刻

第4.4-3表(b) Ssの反転を考慮したすべり安全率一覧表

- 4.5 山頂部の挙動評価
 - (1) 評価概要

3・4 号機の周辺斜面においては、山頂部に風化等の影響により強度が小 さい自然斜面が残る部分が存在するため、自然斜面部の挙動評価を行う。

まず,等価線形化法による地震応答解析により山頂部の挙動をすべり安 全率によって検討する。検討対象としては,第4.5-1図に示すように山頂 部において施設側へのすべり,施設反対側へのすべりをすべり面法により 絞り込み,想定すべり面2つを対象とする。

想定すべり面のすべり安全率時刻歴を第4.5-1表に示す。基準地震動 Ss の反転も考慮した結果も記載しているが、これ以降基準地震動 Ss の反転していないものを「+」、反転したものを「-」と標記することにする。基準地震動 Ss の方向が「水平:-, 鉛直:-」以外の3ケースについては、施設反対側へのすべりが先に1を下回る結果であり、山頂部全体としては概ね施設反対側へ先に変位する傾向であることが分かる。

しかし、これまで用いてきた有限要素法(FEM)は微小変形を想定した 連続体解析手法であるため、大変形挙動を逐次追跡することが可能な手法 として、不連続体解析手法である個別要素法(DEM)を用いて山頂部の挙 動評価を行う。

(2) 評価手法

個別要素法による評価手法の概要を第4.5-2 図に示すが,岩盤を剛体の 粒子要素でモデル化し,バネ,ダッシュポット,スライダー,テンション ジョイントで要素間の接触を考慮する。個別要素法による安定性評価の流 れを第4.5-3 図に示す。

- (3) 評価条件
 - 解析モデル

斜面山頂の風化岩部分(D級岩盤)を個別要素法でモデル化する。解 析モデル図を第4.5-4 図に示す。CL級岩盤に接するD級岩盤底部の要 素に限り要素間を剛結し、CL級岩盤との境界については固定境界とす る。また、本検討においては要素を連結(クランプ)させる。これは任 意の距離係数を設定しその範囲内に存在する要素を連結することで、複 雑な形を作る事が可能となり、岩盤の特性を表現しやすくするものであ る。要素の連結の概要を第4.5-5 図に示すが、本検討では距離係数を1.8 とした。

要素の大きさは山頂部 D 級岩盤厚さの約 10 分の 1 とし,平均粒径 1.5m とする。D 級岩盤上に存在する新期扇状地堆積物については,D 級岩盤と同様のモデル化としている。モデルの単位体積重量は,粒子要 素の空隙を考慮した場合に対象とする D 級岩盤と同様の単位体積重量 となるよう設定する。 ・ パラメータ

解析に用いるパラメータについては、個別要素法モデルの振動特性と 強度特性が、有限要素法モデルと整合するように設定する。

まず,有限要素法の斜面モデルと個別要素法の斜面モデルにパルス波 を入力し,両者の振動特性が整合するようにバネ係数,粘性係数を設定 する。設定の概要を第4.5-6図に示す。

次に第4.5-7回に示すように個別要素法で三軸試験をシミュレーションし、岩盤のせん断強度を再現し得るスライダー、テンションジョイントの値を決定する。設定したパラメータを第4.5-2表に示す。

· 入力地震動

個別要素法で用いる入力地震動は,有限要素法モデルにおける山頂部 D級岩盤とCL級岩盤の境界において,最大水平加速度を示す節点の加 速度時刻歴を,個別要素法モデルの底面部に一様に作用させる。

地震動の方向については、施設側想定すべり面が先に安全率1を下回る「水平:-, 鉛直:-」のケースについて実施する。なお地震動の向きによって斜面の挙動傾向が異なるかを確認するため、水平方向の反転を考慮し「水平:+, 鉛直:-」のケースも併せて実施する。

各ケースにおける加速度抽出点を第4.5-8 図に,各ケースの抽出した 加速度時刻歴(個別要素法入力地震動)を第4.5-9 図,第4.5-10 図に示 す。

(4) 評価結果

個別要素法による地震応答解析の結果のうち,斜面形状の変化を第 4.5-11 図,第4.5-12 図に示す。地震動の向きに関わらず,斜面山頂部は施 設反対側へ滑落する挙動を示している。

また,第4.5-13 図に示す山頂部付近と斜面施設側中央辺りの要素に着目 し,変位の時刻歴を確認する。変位の時刻歴を第4.5-14 図~第4.5-17 図 に示す。山頂部の要素①では地震時に施設反対側へ滑落しているが,斜面 施設側中央辺りの要素②では,地震時に変位が生じ,地震後には施設側へ 残留変位が生じているものの,施設側への滑落は生じていないことが分か る。これらの傾向は地震動の水平方向の反転の有無に関わらず同じである。

以上の検討より、3・4 号機周辺斜面の山頂部は、基準地震動 Ss による 地震力に対して、施設側への変位は生じるものの施設反対側へ滑落する傾 向であり、原子炉建屋等の対象施設の安全機能には重大な影響を与えるこ とは無いものと考えられる。

(a) 山頂部すべり想定すべり面1(施設側)

第 4.5-1 図 山頂部想定すべり面

山頂部想定すべり面安全率時刻歴

第4.5-2図 個別要素法による評価手法の概要

第4.5-3図 個別要素法による評価の流れ

第4.5-4図 個別要素法 解析モデル図

第4.5-5図 要素の連結の概要

第4.5-6図 バネ係数,粘性係数設定方法の概要

第4.5-7図 スライダー、テンションジョイント設定方法の概要

	密度 (kg/m ³)	Kn (N/m)	Ks (N/m)	η n (Nm/s)	η s (Nm/s)	μ (°)	Fu(N)
D 級岩盤	3,000	1.95×10^{9}	1.95×10^{9}	5.83×10^{6}	5.18×10^{3}	65	6×10 ⁵

第4.5-2表 解析に用いた個別要素法のパラメータ

※ 密度は、粒子要素の空隙も考慮した場合に、D級岩盤の単位体積重量と一致するよう設定している。

第4.5-8図 個別要素法で用いた入力加速度の抽出位置

第4.5-9図 個別要素法の入力地震動(水平:-,鉛直:-)

第4.5-10図 個別要素法の入力地震動(水平:+,鉛直:-)

第4.5-11図 斜面形状の変化(地震動 水平:-, 鉛直:-)

第4.5-12図 斜面形状の変化(地震動 水平:+,鉛直:-)

- 4.6 山頂部の変位量評価
 - (1) 概要

3・4 号機周辺斜面の等価線形化法による地震応答解析では、山頂部において第4.6-1 図に示すように比較的大きなせん断ひずみが発生している。 そのため、山頂部を対象に大きなひずみ領域に対しても適用可能な時刻歴 非線形解析を用いて地震応答解析を行う。また、時刻歴非線形解析の評価 結果を用いて地震時の表層部の変位量を評価し、「発電用原子炉施設に関 する耐震設計審査指針」に示される「施設の周辺斜面で地震時に想定しう る崩壊等によっても、施設の安全機能が重大な影響を受けるおそれがない こと」を確認する。

(2) 評価手法

時刻歴非線形解析は、細分化された時間間隔ごとに運動方程式を解くこ とにより、逐次変化する地盤の非線形性を考慮することが可能である。そ のため、地盤の非線形性が著しいと想定される地震時においても、時間の 経過とともに変化する剛性を精度よく評価でき、信頼性の高い地盤応答評 価が可能となる。

滑動変位量の評価は、時刻歴非線形解析の応答結果を用いて Newmark 法により行なう。Newmark 法による変位量評価手法の概要を第4.6-2 図 に示すが、地震応答解析の応力結果を用いて、すべり円弧中心周りの滑動 モーメント、抵抗モーメントを算出し、モーメントの釣合い式を用いて角 加速度を算出し、それを積分して回転変位量を求める。

- (3) 評価条件
 - 想定すべり面

斜面山頂部において、すべり面法により絞り込んだ施設側想定すべり 面において評価を実施する。想定すべり面を第4.6-3 図に示す。

• 解析モデル

評価する山頂部のみを対象とした解析モデルを使用する。解析モデル 図を第4.6-4 図に示す。側方境界は存在せず、底面に粘性境界を設定する。

• 入力地震動

前節第4.5-1表より、山頂部施設側のすべり面が最小すべり安全率を 示す基準地震動 Ssの方向「水平:+,鉛直:-」を用いる。

解析モデル下端に入力する地震動は,等価線形解析の斜面全体モデル における入力地震動を係数倍した地震動を,時刻歴非線形解析モデルに 入力することにより山頂部の地震動の増幅を表現する。 倍率の決定にあたっては、斜面全体モデルを用いた等価線形解析にお ける最大せん断ひずみと、山頂部のみを対象とした解析モデルを用いた 等価線形解析における最大せん断ひずみが同等となるように決定する。 検討の結果、倍率を1.7と設定した。

• 地盤物性

地盤物性については,基本的に等価線形解析による検討と同様の物性 を用いる。

地盤物性のうち変形特性の非線形性については,岩盤の剛性等を鑑み, D 級岩盤,新期扇状地堆積物の部分に非線形性を考慮し,CL 級岩盤, CM 級岩盤部分については線形として扱う。D 級岩盤の剛性には,土の 非線形性を表現する際に一般的に用いられる修正 Ramberg-Osgood モ デル(以下,修正 R-O モデル)を適用する。修正 R-O モデルにおける パラメータを第 4.6-1 表に示す。

減衰については、履歴減衰と Rayleigh 減衰により表現する。Rayleigh 減衰におけるパラメータは、等価線形解析時における減衰を参考に、1Hz において 5%、10Hz において 3%となるように設定する。

(4) 評価結果

時刻歴非線形解析の応答解析結果のうち,施設側最大変位を示す時刻に おける変形図を第4.6-5 図に示すが,山頂部において施設側最大変形量は 2.22cmとなっている。また,地震応答解析におけるすべり安全率の時刻 歴を第4.6-6 図に, Newmark 法による滑動変位量時刻歴を第4.6-7 図に示 すが, Newmark 法による滑動変位量は1.048cm である。変位量はわずか であり,滑動力が抵抗力を上回る累積時間は0.19 秒と短いことから,山頂 部が滑落し,施設の安全機能に重大な影響を与えることは無いものと考え られる。

文献 1) によると、変位量が 1cm 程度であれば、すべり面を構成する地 盤の強度が残留強度には至っていないものと考えられるが、念のため滑動 力が抵抗力を上回った時刻以降は地盤の強度について全て残留強度を用い て算出したすべり安全率の時刻歴を第 4.6-8 図に、Newmark 法による滑 動変位量時刻歴を第 4.6-9 図に示す。変位量は 72.339cm であり、滑動力 が抵抗力を上回る累積時間は 6.08 秒となっていることから、施設側へある 程度変位が見込まれる結果となっている。

3・4 号機の原子炉建屋背面には,第4.6-10 図に示すような土留擁壁(高さ9m,全長約226m)が設置されており,万一山頂部の土塊の一部が滑落したとしても,原子炉建屋等の対象施設の安全機能には重大な影響を与えることは無いものと考えられる。

以上より、3・4 号機周辺斜面が基準地震動 Ss による地震力に対して対象 施設の安全機能に重大な影響を与えるような崩壊を起こさないことを確認し た。

なお、念のため山頂部については、耐震裕度の更なる向上を図るため、対 策工事を行うこととする。詳細の対策工事内容は、関係法令等に則り調整を 行ないながら設計をする必要があるため、今後変更となる可能性はあるが、 第4.6-11 図に示すように、表層部の切取り、アンカーの設置、抑止杭の設置 等の工法を検討することとする。

参考文献

1) 国土交通省 国土技術政策総合研究所:大規模地震に対するダムの耐震性 能照査に関する資料,国土技術政策総合研究所資料第244号,2005.3.

第4.6-1 図 等価線形解析における斜面全体モデルでの 最大せん断ひずみ分布図(地震動 水平:+,鉛直:-)

清動モーメント 抵抗モーメント $M_D > M_R$ となった(角加速度>0)時刻,すなわち滑動力が抵抗力を上回る時刻から 角速度0となる時刻まで変位計算

第4.6-2図 Newmark 法による変位量評価手法の概要

第4.6-4図 時刻歴非線形解析における解析モデル

地質区分	基準ひずみ	非線形程度を表	ミ すパラメータ
	γу	α	β
D 級岩盤	$6.121 imes 10^{-4}$	2.6404	1.3927
新期扇状地 堆積物	$3.750 imes 10^{-4}$	3.1751	1.6468

第4.6-1 表 修正 R-O モデルパラメータ

第4.6-5 図 施設側最大変形図: 10.93 秒(変形は 300 倍に拡大)

第4.6-7図 想定すべり面における滑動変位量

第4.6-8図 すべり安全率時刻歴

(滑動力が抵抗力を上回った時刻以降は、全て残留強度を用い算出)

第4.6-10 図 土留擁壁断面図

第4.6-11図 裕度向上工法案(工法は変更となる可能性がある)